1 Laplace Transform : Definition

If f() is a function defined for all t = 0, its Laplace transform® is the integral of f(f)
times ¢ ¢ from = 0 to . It is a function of s, say, F(s), and is denoted by #(f): thus

= Here, assume that the integral exists. The region where the integral
F(s) = S(f) = J e SU(1) dt. exists is called “Region of Convergence” (ROC). Note that S is

0 generally assumed to be complex, i.e.,s= o+ jow.
Not only is the result F(s) called the Laplace transform, but the operation just described,
which yields F(s) from a given f(7), is also called the Laplace transform. It is an “integral
transform”

F(s) = J k(s, (1) dt

0

with “kernel” k(s. f) = et

Furthermore, the given function f(f) in (1) is called the inverse transform of F(s) and
is denoted by EE_I(F); that is, we shall write

f(ty = L7YF).

Let f(f) = 1 when t = 0. Find F(s).

Solufion. From (1) we obtain by integration

) o

E(f)y=21) = J e dt= —%e"“
0

1
=3 (s = 0).

o

Such an integral is called an improper integral and, by definition, is evaluated according to the rule

T

J e St dt = %imJ e (1) dt.
0 0

Region of

Hence our convenient notation means

P T
1 1 1
J e % dt = lim |:——e_5t] = lim |:—_L’_3T +—¢
0 T—r 5 0 T—= 5 &5

Convergence

_1
== (s > 0).

Ex2 | Laplace Transform £(e™) of the Exponential Function e™

Let f(f) = e when t = 0, where a is a constant. Find ().

Solution. Again by (1),

an

‘:Cf(eﬂt\" — J. e—s’teﬂt dr = p l . e—(s—ﬂ}t
0

hence, when s — a > 0,

|
at, _
He )—S_

a

THEOREM 1 Linearity of the Laplace Transform

The Laplace transform is a linear operation; that is, for any functions f(t) and g(t)
whose transforms exist and any constants a and b the transform of af(t) + bg(t)
exists, and

Elaf(t) + bg(} = a{f(n} + bE{g®)}.

Proof It follows the linearity of integral operation, i.c., integration is a “linear” operation.



ex3 | Application of Theorem 1: Hyperbolic Functions
Find the transforms of cosh at and sinh atr.
Solution. Since cosh at = %(ea’t + ¢~™) and sinh at = %(ea’t — ¢™™), we obtain from Example 2 and
Theorem 1
1w I VA 1 s
H(cosh af) = —(FL(e™) + L(e™™)) = — + =3 5
2 2\s—a s+ a s —a
1 1 1 1
P(sinh af) = — (L(e™) — L(e=%)) = —( - ) -2 |
2 2\s —a s+a s —a
Ex 4 Cosine and Sine ] ] ] ] ] ] o
== Can use linearity by cos ot = (e/”'+ e7*")/2; sin ot = (e/*- e/®)/j2. Can also
Derive the formulas use result from Ex 3 by substituting a = jw.
HF(cos wt) = 2 F(sin wf) = .
52 + w? 2+ o

Solution. We write L, = F(cos wt) and Ly = F(sin wf). Integrating by parts and noting that the integral-
free parts give no contribution from the upper limit %=, we obtain

Ls,

w| B

w” 1
- —J e sinwtdt = — —
5 s

= —st

—t e
L.= J e coswrd.i‘:_—scoswr
0 0

0

oo

[ ” —_st )]
+ S| € cos wt dt = ?Lc.
0 0

= —st
—8t . € .
Ls = e ~ sinwfdt = —, sin wt
0

By substituting Lg into the formula for L, on the right and then by substituting L, into the formula for L; or
the right, we obtain

L= w(“’L) L(1+w2)—1 Le=—5—
¢ F\S A ¢ 52 s ¢ 32+w2"

w1 ® > ® w
Li=—| —— —L;g |, Lill+—5 ==, Ls:m' [ |

THEOREM 2 First Shifting Theorem, s-Shifting
If (1) has the transform F(s) (where s > k for some k), then eatf(r) has the transform

F(s — a) (where s — a > k). In formulas,
L{e™f(D) = Fs — a)

or, if we take the inverse on both sides,

¥ (1) = $THF(Gs — a)).

PROOF We obtain F(s — a) by replacing s with s — a in the integral in (1), so that

F(s — a) = J e~ STV () dt = J e S ()] dt = F{e™F(1)}.
0 0
If F(s) exists (i.e., is finite) for s greater than some k, then our first integral exists for
5§ — a > k. Now take the inverse on both sides of this formula to obtain the second formula

in the theorem. (CAUTION! —a in F(s — a) but +ain ea’tf(r).) [
2
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s-Shifting: Damped Vibrations. Completing the Square

From Example 4 and the first shifting theorem we immediately obtain formulas 11 and 12 in Table 6.1,

§F—a w

(s — a)z + w?

Hf{eatcoswr} = . if{em:sinwr} =

(s — a)z + @
For instance, use these formulas to find the inverse of the transform

3s — 137

5% + 25 + 401
Selution. Applying the inverse transform, using its linearity (Prob. 24), and completing the square, we obtain

f_£_1{3(5+1)—l40}_3££_1{ s+ 1 }_73_1{ 20 }
(s + 1Y% + 400 (s + 12 + 20° s + 12 +202)

L(f) =

CEP
]
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o

g =]
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THEOREM 3

o
ol
°

We now see that the inverse of the right side is the damped vibration (Fig. 114)
f(f) = e~*(3 cos 20¢ — 7 sin 20¢). [ |
Existence and Uniqueness of Laplace Transforms

This is not a big practical problem because in most cases we can check the solution of
an ODE without too much trouble. Nevertheless we should be aware of some basic facts.

A function f(f) has a Laplace transform if it does not grow too fast, say, if for all 1 = 0
and some constants M and k it satisfies the “growth restriction”

2 |£(0)| = Me™,

(The growth restriction (2) is sometimes called “growth of exponential order,” which may
be misleading since it hides that the exponent must be kf, not kt2 or similar.)

f(#) need not be continuous, but it should not be too bad. The technical term (generally
used in mathematics) is piecewise continuity. f(t) is piecewise continuous on a finite
interval a = t = b where f is defined, if this interval can be divided into finitely many
subintervals in each of which fis continuous and has finite limits as f approaches either
endpoint of such a subinterval from the interior. This then gives finite jumps as in
Fig. 115 as the only possible discontinuities, but this suffices in most applications, and
so does the following theorem.

Existence Theorem for Laplace Transforms

If f(t) is defined and piecewise continuous on every finite interval on the semi-axis
t = 0 and satisfies (2) for all t Z 0 and some constants M and k, then the Laplace

transform $( ) exists for all s > k.

PROOF Since f(f) is piecewise continuous, e_s’:f(t) is integrable over any finite interval on the

t-axis. From (2), assuming that s > k (to be needed for the existence of the last of the
following integrals), we obtain the proof of the existence of ¥( f) from

= =

J e S (1) dr M
0

= [ lfwle™ ar = [ Me*e™ " dr=——. ™
0 0

[SHI =




Uniqueness. If the Laplace transform of a given function exists, it is uniquely
determined. Conversely, it can be shown that if two functions (both defined on the positive
real axis) have the same transform, these functions cannot differ over an interval of positive
length, although they may differ at isolated points (see Ref. [A14] in App. 1). Hence we
may say that the inverse of a given transform is essentially unique. In particular, if two
continuous functions have the same transform, they are completely identical.

Example (Region of Convergence)

() ) =1,]fO]<1—>k=0—s>0(ii)f(t) = e, [f()] <MeX >k=a —>s>a

(i) f(t) =t", | f()| <Me' > k=1 —>s>1 (iv) f(t) =cost (orsint), |f(t)]<1—>k=0—->s>0

2 Transform of Derivatives & Integrals
Thm1| | Laplace Transform of Derivatives

The transforms of the first and second derivatives of f(f) satisfy

(1) Ly = s¥(f) — £(0)
(2) L")y = s2L(f) — sf(0) — £ (0).

Formula (1) holds if f(t) is continuous for all t = 0 and satisfies the growth
restriction (2) in Sec. 6.1 cmdf'(r) Is plecewise continuous on every finite interval
on the semi-axis t = 0. Similarly, (2) holds if cmdf" are continuous for all t = 0
and satisfy the growth restriction and f " is piecewise confinuous on every finite
interval on the semi-axis t = 0.

Proof | We prove (1) first under the additional assumption that fr is continuous. Then, by the

definition and integration by parts,

P(f = J e "f () dt = [e” (]| + SJ e~SU(h) dt.
0

0 0

Since f satisfies (2) in Sec. 6.1, the integrated part on the right is zero at the upper limit
when s > k, and at the lower limit it contributes —f(0). The last integral is #( f). It exists
for s > k because of Theorem 3 in Sec. 6.1. Hence if(f’) exists when s > k and (1) holds.
Iff' is merely piecewise continuous, the proof is similar. In this case the interval of
integration of f must be broken up into parts such that ' is continuous in each such part.
The proof of (2) now follows by applying (1) to f" and then substituting (1), that is

"y =L = £10) = s[sLf) — £O)] = SPLf) — sf(0) —f'0). W

Transform of a Resonance Term (Sec. 2.8)

Let f(f) = t sin wt. Then f(0) = 0, f'(f) = sin wr + wtcos wt, f'(0) = 0, f" = 20 cos wt — @t sin wr. Hence
by (2),

— *H(f) = 2L f), thus L(f) = L(tsin wi) = L H
(2 + 0?)?

E(f") = 20——

5 +m2

EX2 f(t) = t, f'(t) = 1, f(0) = 0 — (') = 1/s = s£(f) — 7(0) = s(f), £(F) = 1/s2.
f(t) = 2, (1) = 2t, f(0) = 0 — (F") = 2/s? = s8(f) — f(0) = s£(F), £(F) = 2/s%,



Theorem3

Laplace Transform of Integral

Proof

lg(| =

Let F(s) denote the transform of a function f(t) which is piecewise continuous fort = 0
and satisfies a growth restriction (2), Sec. 6.1. Then, for s > 0, s > k, and t > 0,

t

t
4) Ef{Jf('r) d’r} = %F(S), thus Jf(ﬂ dr = E.E_l{%F(s)}.

0 0

Denote the integral in (4) by g(7). Since f(f) is piecewise continuous, g(f) is continuous,
and (2), Sec. 6.1, gives

t

t
M M
= J £ dTEMJ e dr = ?(ekt -1 E?ekt (k > 0).

0 0

t
Jf(’r) dr
0

This shows that g(f) also satisfies a growth restriction. Also, g'(f) = f(f), except at points
at which f(f) is discontinuous. Hence g’(r) 1s piecewise continuous on each finite interval
and, by Theorem 1, since g(0) = O (the integral from O to O is zero)

L) = L(g' ) = sL{g®) — g0) = sF{gD)}.

Division by s and interchange of the left and right sides gives the first formula in (4),
from which the second follows by taking the inverse transform on both sides. [ |

EX3

1 1

2 2. M o 2,
5(5° + w”) 57(5° + )

Using Theorem 3, find the inverse of

Solution. From Table 6.1 in Sec. 6.1 and the integration in (4) (second formula with the sides interchanged)

we obtain
1 sin ot 1 t sin wt 1
if_l 3 T > = . if_l P TN A J dr =—2(1 — cos wi).
s+ w w (5% + @) 0 w ©

This is formula 19 in Sec. 6.9. Integrating this result again and using (4) as before, we obtain formula 20
in Sec. 6.9:

w” w®

t
T S1n l[t.)‘l'] t Sin @T

£t 1 . t1 dr =
EErery el Rt
0

It is typical that results such as these can be found in several ways. In this example, try partial fraction
reduction. H

0 w [i1]

3 Differential Equation, Initial Value Problem

Consider initial value problem [ *” y tay tby=r), ¥O=Ko, yO=£K

where a and b are constant. Here r(f) is the given input (driving force) applied to the
mechanical or electrical system and y() is the output (response fo the inpuf) to be obtained.
In Laplace’s method we do three steps:

Step 1. Setting up the subsidiary equation. This is an algebraic equation for the transform
Y = ¥(v) obtained by transforming (5) by means of (1) and (2), namely,

[szY — sy(0) — y’(O)] + a[sY — y(0)] + bY = R(s)



where R(s) = (r). Collecting the Y-terms, we have the subsidiary equation
(s + as + b)Y = (s + a)y(0) + y'(0) + R(s).

Step 2. Solution of the subsidiary equation by algebra. We divide by s + as + b and
use the so-called transfer function

1 1
(6) os) = — = 5 T 5
s“+as+b (s+35a) +b—za

(Q 1s often denoted by H, but we need H much more frequently for other purposes.) This
gives the solution

(7) Y(s) = [(s + a)y(0) + ¥'(0)]Q(s) + R(s)Q(s).
If y(0) = y’(O) = 0, this is simply ¥ = RQ; hence

Y Y(output)
=%~ Y(input)

and this explains the name of Q. Note that Q depends neither on r(t) nor on the initial
conditions (but only on a and b).

Step 3. Inversion of Y to obtain y = £~ '(Y). We reduce (7) (usually by partial fractions
as in calculus) to a sum of terms whose inverses can be found from the tables (e.g., in
Sec. 6.1 or Sec. 6.9) or by a CAS, so that we obtain the solution y(f) = f.f_l(}’) of (3).

Exa Solve
= Yi—y=t 0 =1 YO =1

Solution. Step 1. From (2) and Table 6.1 we get the subsidiary equation [with ¥ = Z(y)]

s2Y — sy(0) — y'(0) — ¥ = 1/s%,  thus (s> = DY =5+ 1+ 1/s°

Step 2. The transfer function is @ = 1/ (sz — 1), and (7) becomes

s+ 1 1

2-1 $262-1)

Y=(s+ 1)Q+i2Q=
h

Simplification of the first fraction and an expansion of the last fraction gives

Step 3. From this expression for Y and Table 6.1 we obtain the solution

1 1 1
¥(r) = P Yy) = 5{?‘1{:} + :f‘l{sz — l} - if‘l{s—z} =¢' + sinht — r.



This means initial value problems with initial conditions given at some t = tg > 0 instead of ¢+ = 0. For such a
EX6 ~ . . .
Shifted problem set t = f + g, so that = f gives f = 0 and the Laplace transform can be applied. For instance, solve
ITte
Data yYi+y=2 yim=3iw, Ydm=2-V2
Solufion. We have ty = ;1;7'." and we sett =1 + ;1;1".". Then the problem is
V' 4y =20+zm.  FO)=zm (0 =2-1V2
where ¥(7) = y(#). Using (2) and Table 6.1 and denoting the transform of y by Y. we see that the subsidiary
equation of the “shifted” initial value problem is
1 1
~ ~ 2 37 = _ 2 2T 1]
SV —s3m—(2- V2)+ Y= +—, thus (s°+ l)}’=—2+—+5’n’s+2—\/§.
5 § s 5
Solving this algebraically for 17, we obtain
1 1
~ 2 2™ 2ms 2-V2
Y = + + + :
G+ D52 P+ 2+ 1 241
The inverse of the first two terms can be seen from Example 3 (with @ = 1), and the last two terms give cos
and sin,
y =9 Y¥)y=27—sin?) + 171 —cos?) + Imcos7T + 2 — V2)sin7
= 2f +%7T — V2sint.
~ ~ 1
Nowt=1— fiqr, sint = — (sint — cos t), so that the answer (the solution) is
2
y =2t —sinf + cost. [ |
Unit Step Function (Heaviside Function) u(t — a) u®

The unit step function or Heaviside function u(t — a) is O for t < a, has a jump of size
1 at t = a (where we can leave it undefined), and is 1 for f > a, in a formula:

0 ift<a » t—Oa) t
@ -] @m0,
1 ift>a )
|
= = —st | * |
Plut — a)) = | etu(r — dtzJ “toldr=-© ; s |
{ut — a)} L e u(t — a) ae T - Plu(t — @)} =es ! é
If f(t) has the transform F(s), then the “shifted function”
Theorem 1
Time-shifting 0 ift < a
3) f@O) =ft— aut —a) = {

ft—a) ift>a
has the transform e~ “F(s). That is, if £{f (1)} = F(s), then

4) L{f(t — ayu(t — a)} = e”¥F(s).

Or, if we take the inverse on both sides, we can write

(4*) f(t — a)u(t — a) = Sj'_l{e_asF(s)}.

0 00 t=r+a . 0
Proof e *F(s) =e* jo f(r)e > dr = jo f(r)e " dr = [ f(t—a)edi= jo f(t—a)u(t —a)e *dt
a ﬁr—/
f(t)



EX1
Time
Shift

EX 3
Time
Shift

Write the following function using unit step functions and find its transform.

2 ifo<r<1
f(h=23t2 ifl<t<gm (Fig. 122)
cost if r>%'n'.

Solution. Step 1. In terms of unit step functions,
f = 2(1 — u(t — 1)) + 32wt — 1) — u(t — 7)) + (cos Hu(t — Fm).

Indeed, 2(1 — u(t — 1)) gives f(f) for 0 < ¢ < 1, and so on.

Step 2. To apply Theorem 1, we must write each term in f(7) in the form f(t — @)u(t — a). Thus, 2(1 — u(r — 1))
remains as it is and gives the transform 2(1 — e_s)/s. Then

77 ST (Y DS S l) _}z(LLL)-s
,f{zru(r 1)} ,f(zfr * + (t 1)+2 u(t — 1) 53+52+2se

i3 -3) 3 5) ()

5 25 8s
1 . 1 1 1 —ms/2
Ey(ostiult ——a |p =Ly —|sin|t ——7 ||Jult——7 | = —— e :
2 2 2 =+ 1
Together,
2 2 111 1 7 7 1
@ =" Sty s+ — e -+ — +— ,—TE2 _ .—11'.?;'2.
() Ky s ¢ (53 52 25)9 (53 252 Ss)e s2+ 1 ¢

If the conversion of f(#) to f(t — a) is inconvenient, replace it by

() PLf(Ou(t — a)} = e CE{f(t + a)}.

(4**) follows from (4) by writing f(t — a) = g(f), hence f(f) = g(t + a) and then again writing f for g. Thus,
if{%rzu(t - 1)} = e_sif{%(r + 1)2} = e_sﬁf{% 2+t % } = e‘s(sig + Siz + %)

as before. Similarly for ¥ {112u(r — 377)}. Finally, by (4%%),

1 1 1
if{cosru(r - E’:’r)} = e_"”zif{cos(r + E’rr)} = "L (—sint) = —e T T 1 [ |
s

Response of an RC-Circuit to a Single Rectangular Wave

Find the current i(r) in the RC-circuit in Fig. 124 if a single rectangular wave with voltage Vj is applied. The
circuit is assumed to be quiescent before the wave is applied.

Solution. The input is Vy[u(t — a) — u(t — b)]. Hence the circuit is modeled by the integro-differential

equation (see Sec. 2.9 and Fig. 124)

q(1) 1 [t
Ri(fy + — = Ri(r) + —J ilTydr = v() = i{,[u(r —a) — u(t — b)].
c cl,



!

vit) i(t)

o
vit)
o]

R 0 a b t 0 a bV

Using Theorem 3 in Sec. 6.2 and formula (1) in this section, we obtain the subsidiary equation

1Is) W
RI(s) + —=—[e™™ - e_bs].
sC s
Solving this equation algebraically for I(s), we get
g q g y (5) g Vo/R
I(s) = F(s)(e~™ — e_bs) where F(s) =———— and E_I(F) =Eje_t/(RC)
s + 1/(RC) R ’

the last expression being obtained from Table 6.1 in Sec. 6.1. Hence Theorem 1 yields the solution (Fig. 124)
1 1 1 b Yo (t—a)/(RC) (t=b)(RC)
i =% = He BFs)} — $™He ®Fs)} = ;[e_ ~WEOy(t — a) — e VROt — by);

that is, i(f) = 0if t < a, and

Kqe~HEO ifa<t<b
i(f) =
1 (K1 — K)e ¥BO ifa>b
where K1 = Ve (RC)/R and Ky = %ebﬂRC)/R. [ |
Alternative Approach Let vc be the voltage across the capacitor and assume vc(0)=0, then
i dq dy,
Ve +Vg=V. +Ri=v.+R—=v. +RC—S= =V,
C R C C dt C dt S
Taking the Laplace transform yields
Vole™-e®™)is v, [e*-e™ as Il 1 j
as bs V. = 0 —_0 :Veas_ebs - -
Ve +RCsVg =V =V(e™ —e™)/s ,"°~ " 14sRC  RCs(s+1/RC) ol s s+1/RC

Thus, Ve =Vollut—a) —u(t—b)—e """ u(t—a) +e " *ut-b)| anq i) = dg/dt = Cavet,
4 Dirac Delta Function, Unit Impulse Response

short I/k fa=t=a+k 1; e
Impulse fk(-r —a) = { l
0 otherwise T 7
Dirac Delta | |Unit Impulse S(t — a) = lim t — a. .y du(t-a)
Function Function ( ) k—0 fk( ) ot-a)= dt
w ift=a [
Property ot — a) = { and J o(t —a)dt = 1
0  otherwise 0

oo

Sifting Property

noé(t — a) dt = 1
Lg()( a) 8(@) fk(r—a)=z[u(r—a)—u(r—(a+k))]

—ks imi : -
o | _ P Take limit p _ ,—as
Pt — a)) :ks [g as _ , (a+k)s]:€ as o [ 25 ke> 0 P J{S(f a)l = e -




Find the output voltage response in Fig. 135if R =20Q, L = 1H,C = 107*F, the input is 8() (a unit impulse
at time t = 0), and current and charge are zero at time t = 0.

Solution. To understand what is going on, note that the network is an RLC-circuit to which two wires at A
and B are attached for recording the voltage v(f) on the capacitor. Recalling from Sec. 2.9 that current i(f) and
charge ¢(f) are related by i = ¢’ = dg/dt, we obtain the model

. . q_ " ! q_ w ’ —
Li +R1+E—[q + Rq +E—q + 20" + 10,000 = &(1).

From (1) and (2) in Sec. 6.2 and (5) in this section we obtain the subsidiary equation for Q(s) = F(q)

1
(s + 10)% + 9900

(52 + 20s + 10,000)Q = 1. Solution 0=

By the first shifting theorem in Sec. 6.1 we obtain from @ damped oscillations for g and v; rounding 9900 = 99.502,
we get (Fig. 135)

1 q
g=9"10) = 5950 ¢ “10% Gin9950r and v = e 100.5¢ 1% sin 99.501. [ |

LUR v g(t) : “unit impulse
8ol response” = response of
unit impulse function
R § L 40

a = R/ 2L (damping attenuation) \
@, =1/~/LC (natural frequency)

a R |C
=— =—_|— (damping factor
g o 2‘/L( ping )

C
M Y s 0\/ o15702 <055 03
0 o 40 Here, (=0.1<1 -> Underdamped response
vit)="? -80 (¢>1 -> Overdamped response;
¢=1 -> Critically damped response /
t
5 Convolution h(t) = (f *g)(t) = jo f(r)g(t—r)dr

Convolution Theorem .
Use notation

If two functions f and g satisfy the assumption in the existence theorem in Sec. 6.1, h(t) = f(t)*g(t) =
so that their transforms F and G exist, the product H = FG is the transform of h (f*o)(v).

given by (1). (Proof after Example 2.)

Some Properties f*g = g*f (Commutative), f*(g1+g2)=f*g:1+f*g2 (distributive), (f*g)*h = f*(g*h)
(associative), f*0 = 0*f =0

Ex Let H(s) = 1/[(s — a)s]. Find h(1).

II—‘|

Solution. 1/(s — a) has the inverse f(f) = €™, and 1/s has the inverse g(f) = 1. With f() = " and
g(t — 1) = 1 we thus obtain from (1) the answer

at ! a 1 at
hih =e *IZJeT-ld*r:E(e - 1.
0
a 1 1
5 = = L") E().

1
a s —as s-—a

1 1 1
H(s) = Z£(h)(s) = ;( - _) =

§ —a hY

10



Let H(s) = 1/(s®> + &2)%. Find h(1).

Solution. The inverse of 1/(52 + wz) is (sin wi)/w. Hence from (1) and the first formula in (11) in App. 3.1
we obtain

IN|

sin wt N sin wt

h(f) =

t
1
= —2J sin w7 sin w(t — T) dT
w ) o

1t
= J- [—cos wt + cos (2o — wi)] dr

Nl

sin @t ]t
—Tcoswf +

gN

=10

sin wt
[—rcos wt + ]
2&)2

oo

Proof Let _ C
F(s) = J e ¥f(r) dt and G(s) = [ e Pg(p) dp.
0 0

w0

PTG = J e Vet — 1) dr = es"{ e~ gt — 7) dt.

T T

7 in F and f in G vary independently. Hence we can insert the G-integral into the
F-integral. Cancellation of ¢~ *" and ¢°" then gives

-] -

F(s)G(s) = { e_”f('r)eST{ e_Stg(r — r)dtdr = J f('r){ e_Stg(r — 7)dt dr.

0 T 0

-]

Here we integrate for fixed 7 over 7 from 7 to % and then over 7 from 0 to <. This is the ,
blue region in Fig. 141. Under the assumption on f and g the order of integration can be
reversed (see Ref. [AS5] for a proof using uniform convergence). We then integrate first
over 7 from O to ¢ and then over f from O to oo, that is,

=]

x t
F(s)G(s) = f ‘“J f(ng(t — Tydr dt = J e S h(n dt = L(h) = H(s).

0 0 0
Application to Nonhomogeneous Linear ODEs

(2) y' +ay' + by = (a, b constant)

has the solution [(7) in Sec. 6.2]

¥(s) = [(s + a)y(0) + ¥ (0)]Q(s) + R(5)O(s)

with R(s) = ¥(r) and Q(s) = 1/ (52 + as + b) the transfer function. Inversion of the first
term [ --- ] provides no difficulty; depending on whether %az — b is positive, zero, or
negative, its inverse will be a linear combination of two exponential functions, or of the
form (c; + cofe” 2, or a damped oscillation, respectively. The interesting term is
R(5)Q(s) because r(f) can have various forms of practical importance, as we shall see. If
v(0) = 0 and y’(O) = 0, then Y = RQ, and the convolution theorem gives the solution

t
w1) = J q(t — T)r(7) dr. % y(t) = g()*r(t) ]

0
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Using convolution, determine the response of the damped mass—spring system modeled by

v+ 3y + 2y = A1), r{f) = 1if 1 <t < 2 and 0 otherwise, y0) = y'(0) = 0.

This system with an input (a driving force) that acts for seme time only (Fig. 143) has been solved by partial
fraction reduction in Sec. 6.4 (Example 1).

Solution by Convolution. The transfer function and its inverse are

1 1 1 1 — ot
Q(s) = — = = - , hence g(f) =e " — ™
s+ 33+2 s+Ds+2) s+1 s+ 2

Hence the convolution integral (3) is (except for the limits of integration)

1
_}-‘(P‘) — [q(f _ 1') ldr = J[H_(t_T} _ 8—2&'—7)] dr = e—(t—’r) _ 58—2{{:—7).

Now comes an important point in handling convolution. /{1) = 1if 1 << 7 < 2 only. Hence if t << 1, the integral
is zero. If 1 << t << 2, we have to integrate from 7 = 1 (not 0) to 7. This gives (with the first two terms from the

upper limit)
W) = e — Lm0 = (o@D _ Lm2e-Dy 1 =D L -2¢-D)

If t = 2, we have to integrate from 7 = 1 to 2 (not to ). This gives

}"(f] — e—(r—Z} _ %8—2&—2) _ (H—(t—ll _ ée—ztr—ll}.
yit)
1+ ey
| I
| I
0.5 I : Output (response)
' I
| [
| e
0 L | | T
0 1 2 3 4 t

Note: For [(s+a)y(0)+y'(0)]Q(s) term, £*{[ay(0)+y'(0)]Q(s)}=[ay(0)+y'(0)]a(®), £*[sQ(s)]=q' (t)+a(0) Xt).
Sinusoidal Steady State Analysis

Consider a system with sinusoidal input (i.e., cos at) where the unit impulse response is given by q(t) and all

initial values are assumed to be zeroes. Then, the output is given in terms of convolution as
y(t) = q(t) * cosat = j;q(r)cosw(t —7)dr= _[:q(r)COSa)(t —7)dr— jt “q(r)cosaw(t —r)dr .

sinusoidal steady stateresponse transientresponse
The transient response will go to 0 as t goes to o if the system is stable. Let ysss(t) denotes the sinusoidal
steady state response,

0= [ a@cost—r)dr == [ o) L) [Ma@e i dr+
Ysss() =], a =51 ==}, d

*

Q(jw)} = Re[Q(jm)e™ |=[Q(jo) cos(t + ¢)

e—ja}t 0 .
5 jo q(r)e’"dr

efjwt ] eja)t jot
—lw) =——

, Qo)== >

where Q(jw) is the transfer function evaluated at s = jw, which is called system “frequency response”.

Ex1 Consider an RLC-series circuit, where the source is given by vs(t) = cos «t. The ODE is given by

Ri+ Lﬂ+vC =V, i :C%—> LCdZ\gC +RC v + Ve =V
dt dt dt dt
LCSV, +RCsV, +V, =V, = Q(s) = (LCs? +RCs+1) " > Q(jw) = (- LCa’ + jRCa +1) .
[From steady-state circuit analysis] I = [R + joL + (joC)™]™* = (jwC) Ve — Ve=[jwRC-a?LC +1] 7.
Ex2 Consider an RLC-parallel circuit, where the source is given by is(t) = cos at. The ODE is given by

=€ Q(io)+ Qo)
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dv %

1+CE+iL:is,v:L di,

d?i ..
-S> LC—E+GL—t+i, =i. (G=1/R
dt dt? dt " s )

LCs?l, +GLsl, +1, = Iy >Q(s) = (LCs* + GLs+1) " > Q(jo) = (- LCa® + jGLo+1) .

Note that this is the dual problem to Ex1, whose solution can be obtained from that of Ex1 by substituting
R—1/R=G, L—C, C—L with ® remains the same.

[From steady-state circuit analysis] V = [G + joC + (joL) ]! = (jolL) L = I.=[joGL-?LC +1] .

6 System of ODEs

yi = @iy + agays + 81(0»53’1 —y1(0) = a1} + a2lo + 01(5)» (a7 — K + apl = —y(0) — Gyi(s)

Yo = aziy1 + Gy + g2(1). 7 s — yo(0) = am¥ + age¥s + Go(s).
Can be written as y'=Ay+g — AY =-y(0)-G, where

a; a, Y1 \4 Y4 ¥,(0) 9, G,
= Y=l Y= Y= y(0) = ;g=| G=
Al el o e ke e e le)

Find the currents i1(f) and ig(f) in the network in Fig. 145 with L and R measured in terms of the usual units
(see Sec. 2.9), v(r) = 100 volts if 0 = t = 0.5 sec and 0 thereafter, and #0) = 0, i'(O) = 0.

aghy + (azz — 9% = —ya(0) — Gals).

Solution. The model of the network is obtained from Kirchhoff’s Voltage Law as in Sec. 2.9. For the lower
circuit we obtain

0.8i] + 1(iy — ia) + 1.4i; = 100[1 — u(t — 3)]
and for the upper

1-ib 4 1(iz — i) = 0.
Division by 0.8 and ordering gives for the lower circuit
i1 + 3ip — 1.25i5 = 125[1 — u(t — %}]
and for the upper
PP L,=08H

iy — i1 + iz = 0.

With i1(0) = 0,i5(0) = 0 we obtain from (1) in Sec. 6.2 and the second shifting theorem the subsidiary
system

1 ™52
- =125 = —
(s + 3); — 1.251, 1_5(5 . )
—I + (s + g = 0.

Solving algebraically for I1 and Iz gives

125(s + 1)
h=——"—"]"0- ™,
s(s + 3)s +3)
125
Iy=——" (1 — e 52,

1 7
s(s + 3)s +9)
The right sides, without the factor 1 — e~%2, have the partial fraction expansions

500 125 625
Ts 3 +3d 206+
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and

500
Ts

respectively. The inverse transform of this gives the solution for 0 = ¢

iy =

ig(f) =

250 250
p— + R
3s+3) 21s+3)

_125,-t/2 _ 625 -T2 4

_230,-t/2 | 250,-Tt/2

500
M

1.5 2 25
Currents

According to the second shifting theorem the solution for ¢ = % is i1(f) — i1(t — %} and io(f) — ialt — %L that is,

i) = —1B(1 — (VA t/2 _ 85| _ 14, ~T/2
(r >3
ig(t) = _%(l - Eljd)f—r;‘z + %{1 — E'i',r'-i)f—'?r,v'z
7 Practice Problems
f) ODE
toa 2 a.y'+y =f(t), y(0)=1
b. y'+2y = 1(t), y(0)=2
0 1 2 0 1 2
c. y'+3y =f(t), y(0)=-1
3 41 d. y'+4y = (1), y(0)=-2
0 12 0 1 2 e. y"+5y'+6y = f(t), y(0)=1, y'(0)=2
f. y"+6y'+8y = f(t), y(0)=2, y'(0)=1
5 1 6 /
\_ / g. y"+5y'+4y = f(t), y(0)=1, y'(0)=-1
0—I1—IZ_ 0 1 2 h. y"+4y'+4y = f(t), y(0)=-1, y'(0)=2
[ 8 5
1 1
0 1 2 0 1 2
9 sin(t)ut)—u(t—=)] |10 sin(a)u(t)—u(t-1)]

N

11 [cos@)[ut)-u(t-=)] |12 |co

15 coshit)[u(t) —ut—-=)] | 1

»

13 sinh(t)[u(t) —u(t—=)] | 14 sinh(z)[u(t) —u(t—1)]
cosh(z)[u(t) —u(t —1)]

s(t)|[u(t) —u(t-1)]

Question

1. Find the Laplace transform of f(t), then solve the ODE.
2. Find the unit impulse response of the system specified by the ODE, then use convolution to find the system output

when the input is given by f(t).
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