LE200 Electromagnetic Theory Class Agreements

- Homework:
 - group of no more than 3 persons.
 - turn in by due dates before class begins.
 - graded by your efforts and your presentations.
- Exams : Midterm (one 2-page handwritten A4 note allowed), Midterm #2 (open), Final (two A4 notes allowed)
- Class notes : *mostly* follow the textbook; please print them yourselves; ideally go through them before each class.
- Check updates on class webpage regularly.

Important Things to learn

- Vector Analysis.
- Electrostatics or "static" electric field.
- Steady Current, namely DC.
- Magnetostatics or "static" magnetic field.
- Electromagnetics or Time-varying field.
 - Maxwell's equations
 - Electromagnetic (EM) waves

Electromagnetics (EM)

- Electromagnetics = Electrics + Magnetics
- Electromagnetic (EM) waves occur when there exist both electric and magnetic fields simultaneously and they are coupled to each other.
- How is it important ?
- When considering radiation, we cannot radiate either only electric field or only magnetic field, thus both fields exist and are related as shown in the figure below.

Technological Applications

- Wireless Communications
 - Cordless telephone
 - Mobile (Cellular) telephone
 - Mobile data transfer (e.g., wireless LAN)
 - Satellite Communication (e.g., broadcast, long-distance telephone)
 - Global Navigation/Positioning System (e.g., GPS)

Technological Applications (con'd)

- Special Wireless Services
 - Radar Systems (e.g., airborne, surveillance)
 - Radio Astronomy
 - Electromagnetic Sensors
- "Wired" Technology
 - Cable Communications
 - Digital and Analog Electronics
 - Power Generation and Supply
 - Electro-mechanical Devices and Machinery

Technological Applications (con'd)

- Photonics and Optics
 - Optical communication
 - Optical sensor
- "Household" Appliance
 - Remote Control
 - Speaker
 - Camera, Video Camera
 - Magnetic-type memory (e.g., hard drive)
 - Display monitor
 - Microwave Oven

Communication Model

Figure 1.1 Functional block diagram of a communication system.

Communication Systems by medium

1. Cable Communication (Wire, or Guided)

Communication network and Transmission Lines

Optical Communication

2. Radio Communication (Wireless)

Radio Engineering Mobile Telecommunication Antenna Engineering Radio Wave Propagation

Electromagnetics

Satellite Communication System

AT UL

Oscillator Mixer $f_1 = 6 \text{ GHz}$ $f_0 = 2 \text{ GHz}$ Mı Receiver M_2 $f_2 = 4 \text{ GHz}$ Circulator Transmitter $f_2 = 4 \text{ GHz}$ Satellite segment 6 GHz 4 GHz Jplink @ 6 GHz Downlink @ 4 GHz **Ground station 2 Ground station 1** Transmitter Receiver Coder coax Frequency coax Multiplexer translator +optical fiber coax Voice Video and coax (> Transmitter Coder Data Receiver (Telephone) voice **Terrestrial microwave** link

Figure 1.1

Radio frequency spectrum

The band designations shown below are made by the International Radio Consultative Committee (Commite' Consultatif Internanational de Radiodiffusion - CCIR)

Band No.	Freq. Range	Designation	Application
2	30Hz – 300Hz	Extremely Low Freq. (ELF)	Ac power
3	0.3kHz – 3kHz	Voice Freq. (VF)	Voice
4	3kHz – 30kHz	Very Low Freq. (VLF)	Submarine
5	30kHz – 300kHz	Low Freq. (LF)	Marine navigation
6	0.3MHz – 3MHz	Medium Frequency (MF)	AM radio broadcast
7	3MHz – 30MHz	High Frequency(HF)	SW broadcast, CB
8	30MHz – 300MHz	Very High Frequency (VHF)	FM, TV broadcast
9	300MHz – 3GHz	Ultrahigh Frequency (UHF)	TV,cellphone,radar,satelite
10	3GHz – 30GHz	Superhigh Frequrncy (SHF)	Microwave links, satellite
11	30GHz – 300GHz	Extremely High Frequency (EHF)	Sophisticated application
12	0.3Tera-3TeraHz	Infrared light	Electromagnetic radiation
13	3THz – 30THz	Infrared light	concerning heat, heat
14	30THZ – 300THz	Infrared light	seeking, photo, astronomy
15	0.3Peta-3PetaHz	Visible light	Optical fiber system
16	3PHz – 30PHz	Ultraviolet light	
17	30PHz – 300PHz	X-rays	Very little application to
18	0.3Exa-3ExzaHz	Gamma rays	communications
19	3EHz – 30EHz	Cosmic rays	

10[°] hertz (Hz), 10³ kilohertz (kHz), 10⁶ Megahertz (MHz), 10⁹ Giga hertz (GHz), 10¹² Tetrahertz (THz), 10¹⁵ Petahertz (PHz), 10¹⁸ Exahertz (EHz),

In the United States, freq. Assignments for free-space radio propagation are assigned by the Federal Communications Commission (FCC)

The electromagnetic field splits into two independent parts:

StaticsElectrostatics: (q, E)Static charge (not a function of time)Magnetostatics: (I, H)Steady current

Time-varying Electromagnetics: (E, H) - Time-varying (accelerated) current

Static Fields --> Electric and magnetic fields not related to each other. Time-varying Fields --> Electric and magnetic fields related by Maxwell's Equations. The following areas rely upon static field theory:

The following areas rely upon Time-Varying field theory:

Introduction A Brief History of Electromagnetic Fields and Wave <u>Electrics</u>

 \Box 6th century B.C. - Static electricity was discovered in Greece.

□ 1752 Benjamin Frankin suspected that electric charges in sky caused lightning and thundering. He used a kite to prove that lightning is really a stream of electrified air, known today as plasma and also invented a lightning rod.

Magnetics

1820 : Hans Christian Oersted proved that electric current

affects polarity of a compass needle.

Figure 19-19. The Oersted experiment as viewed from above. In each diagram the compass needle is located below the conductor. Shortly after Oersted's discovery,

André-Marie Ampére studied the magnetic field due to electric

currents flowing through electric conductors.

Parallel currents in two loops also attract

Figure 19-21. Forces between parallel currents (A) in the same direction and (B) in opposite directions.

Two coils of many parallel loops, with currents in the same direction, attract each other and act like magnets

Michael Faraday believed that "if currents create magnetic field, then reciprocally magnetic field should also create electric currents."

1831 : Faraday discovered the induced current.

1864 : James Clerk Maxwell combined electric fields with magneticFields and proved that there existed electromagnetic waves; this isknown as "Maxwell's Equations".

TEM : Transverse Electromagnetic Wave

1886 : Heinrich Rudolf Hertz proved the existence of electromagnetic

Waves.

Science Museum Pictorial / Science & Society Picture Library
Viewed by Guest on 8/9/2005

1896 : Guglielmo Marconi was the first to succeed in transmitting and receiving radio waves.

A schematic of Marconi's 1900 wireless

system

Then came

- ➢Radio broadcast (1900s)
- ➤Telegraph (1900s), origin of "wireless" communications
- ➤Television broadcast (1930s)
- ➤Satellite communication or SATCOM (1960s)
- ≻Car phone (1980s)
- Cellular phone/Mobile phone (1990s)
- ≻Wireless LAN or WLAN (Wi-Fi) (1990s)
- ➢WiMAX or Worldwide Interoperability for Microwave Access (2000s)
- ≻.....