Curvilinear Coordinates and Vector Calculus

1. Orthogonal Curvilinear Coordinates
Let the rectangular coordinates (x, y, z) of any point be expressed as functions of (u,
Uy, u3) so that

x = x(uy, uz, uz), y = y(uy, ua, u3), z = z(u1, uo, u3) (D
Suppose that Eq.(1) can be solved for u;, uy, u3 in terms x, y, z, i.e.,
up = ui(x, y, 2), uz = uz(x, y, 2), u3 = uz(x, y, 2) )

The surfaces u1=c;, u,=c,, us=cs, where ci, c», ¢z are constants, are called coordinate
surfaces and each pair of these surfaces intersect in curves called coordinate curves or
lines (Fig. 1). The coordinate surfaces as well as the base vectors for Cartesian
coordinates, cylindrical coordinates, and spherical coordinates are shown in Fig. 2,
Fig. 3, and Fig. 4, respectively.
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Let R =Xx+§y+ 7z be the position vector of a point P. Then Eq.(1) can be written as
R = R(u;, u, u3). A tangent vector to the u; curve at P (for which u, and us; are

. OR . e e
constants) is — . Then a unit tangent vector in this direction is given by
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so that R = he, where h, = R .
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Similarly, if e, and e; are unit tangent
vectors along u, and us curves at P
respectively, then

a_R =h,e, and a_R = hse,, “)

ou, ou, -

where h, = 6_R and hy = oR . The
ou, ou,

quantities h;, hy, hs are called scalar
factors. The unit vectors e, e,, e are in
the directions of increasing u;, u, us
respectively (Fig. 5). Fig. 5

Definition 1: The coordinates system (u;, up, u3) is said to be orthogonal curvilinear
coordinates if and only if their unit vectors e, e, e; are orthogonal.

2. Arc Length and Volume Elements
In an orthogonal curvilinear coordinates (u;, up, u3), from R = R(uy, uy, u3), we have

dR = a—Rdul +8—Rdu2 +8—Rdu3 = h,du,e, + h,du,e, + h,du.e, 5)

u, u, U
Then the differential of arc length ds is determined from
ds> =dR-dR = h'du] + hidu; + hidu; (6)
Referring to Fig. 6 the volume element for an
orthogonal curvilinear coordinate system is given by
dv =|(hdu,e, )- (h,du,e,)x (h,du,e, )| = hh,hydu,du,du, (7)

since |e1 ‘e, X e3| =1.
3. ¥Operator in Orthogonal Curvilinear

Coordinates
(1) Gradient in Orthogonal Curvilinear Coordinates

Fig. 6

For any scalar function ®, we can express its gradient in orthogonal curvilinear
coordinate system (u;, us, u3) as

VO = fie|+ frer+ f3e3, ()
where ej, e, e3 are unit vectors in the directions of increasing u;, u, us respectively.
Since

dR = a—Rdu1 +8—Rdu2 +8—Rdu3 = h,du,e, + h,du,e, + h,du,e,, we have
U, u, U,
(1) dd=V®D-dR = fhdu, + f,h,du, + f,h,du, . But
2) dd)z-égldul+~§gldu2+~§gldu3,
u, ou, ou,
1 0b 1 oD 1 0b
equating (1) and ) yields f, =——; f, =——; f, =———.
q g (1) 2y S h ou, B h, ou, /i h, ou,

Then the gradient of @ is given by
e, 00 e, 0O e, 0D
h Ou, h, Ou, hy Ou,
This indicates the operator equivalence

VO )
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e 0 e 0 e O
=——+—+—=
h, Ou, h, ou, h, Ou,

(10)

(2) Divergence in Orthogonal Curvilinear Coordinates

Consider the volume element AV (see Fig. 7) having edges h1Au;, hoAus, h3Aus. Let A
= Aje;+ Aer+ Ases and let n be the outward drawn unit normal to the surface AS of

AV.

On the face JKLP, n = -e;. Then we have o

approximately, *:
j A -ndS = (A -nat point P ) Area of JKLP) 4

JKLP

= [(Alel +A,e, + Ase, ) (_ ¢ )](h2h3A”2A”3)
=—Ah,h,Au,Au,
On face EFGH, the surface integral is
A hyhyAuyAuy +ai(Alh2h3Au2Au3)Aul,
u

1

apart from infinitesimal of order higher than »
AuiAuAus. Then the net contribution to the surface .
integral from these two faces is Fig. 7

[[A -nds+ [[A-nds = ai(Alhzh3Au2Au3 )Au, = ai(Ath}% )Au, Au, Au,
JKLP EFGH ul ul
The contribution from six faces of AV is

i(A1hzh3 )+ i(Azh1h3 ) + i(A3h1hz ) Au, Au,Auy

ou, ou, Ou,

L

Dividing this by the volume hjhyh3Au;AusAus and taking the limit as Auy, Aup, Aus

approach zero, we find
divA=V-A= ! i(A1h2h3)+i(A2h1h3)+i(A3hlh2) (1)
hh,h, | Ou, ou, Ou,

(3) Curl in Orthogonal Curvilinear Coordinates

Let us first calculate (V x A)-e,. To do this, consider the surface S, normal to e; at P,

as shown in Fig. 8.
Denote the boundary of S} by Cy. Let A = h

Aje1+ Arer+ Ases, we have J
§A-dr:jA-dr+IA-dr+ IA-dr+jA-dr u g L
G PQ oL M MP (

The following approximation holds ot s,

e
[A-dr=(AatP)h,Aue,)= Ch
(1) 0 Bl 0
(Ae, +Ase, + A, ) (hAu,e, )= A,h,Au, /

Then R
[A-dr=a,h,Au, + =2 (A Au, )Au, or Fig. 8
ML Outy

0

@) [A-dr=—AhAu, ———(Ah,Au, )Au,
v ou

3
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Similarly, [A-dr =(AatP)hAue,)= AhAu; or
PM

(3) [A-dr=—AAu, and
MP

@) [A-dr=AhAu, +ai(A3h3Au3)Au2

oL 2
Adding (1), (2), (3) and (4) we have
fA-dr :i(A3h3Au3)Au2 —i(Azthuz)A% = i(A3h3)—i(A2h2) Au,Au,
& ou, ou, ou, Ou,

apart from infinitesimal of order higher than Au,Aus. Dividing by the area of S} equal
to hohsAusAus and taking the limit as Au, and Aus approach zero,
1| o 0
VxA)-e = —I(Ah ) —— (AR
xA)e, =] () )|
Similarly, by choosing area S, and S3 perpendicular to e, and e3 at P respectively, we
find (VxA)-e,and(V x A)-e,. This leads to the required result

A= O (an) =2 (am) [+ 2| (an) -2 () [+ 2| L (ah) - (A,)
{a } [ } h { }

2 U, Ou hyh, | Ou, Ou, ) a_“l Ou,
he, he, hie,
__1 o & o
_hlh2h3 Ou, Ou, Ou,
hlAl h2A2 h3A3
(4) Laplacian in Orthogonal Curvilinear Coordinates

To evaluate the Laplacian of a scalar function @® in orthogonal curvilinear
coordinates, we are making use the Eq.(11) by taking A = VO = fie|+ fre;+ f3e3

1 0 0 0
VD=V -A= —\fihhy ) +—\fohhy )+ —(fhh
| e i)

= 1 i iaghzhs _,_i iaﬁhth _,_i iaﬂhlhz (13)
hyhyhy | Ou, \ hy Ou, Ou, \ h, Ou, Ou, \ hy Ou,

1| hohy 00 0 (hhy o®) 8 (Mh, 0P
hhyhy | Ou, \ h, Ou, ) Ou,\ h, Ou, ) Ous\ hy Ou,

12)

4. Divergence, Curl and Laplacian in Curvilinear Coordinates
(1) Spherical coordinates

Fig. 9 shows the relationship between the spherical
coordinates and the Cartesian coordinates. The
spherical coordinates (r, 8, ¢) of a point have the
following relationships with rectangular coordinates:

x =rsinfdcos ¢
y =rsin#sin ¢ (14)
z=rcosf

We have the following relations
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v =Z gy + % de + S—;‘; d¢ = (sin @ cos ¢ )dr + (r cos 6 cos ¢)d6 — (r sin sin ¢ )d

dy 6ydr+6y d@+%d¢ (sin @sin ¢)dr + (r cos @sin #)dO + (rsin O cos ¢)dp (15)

or 00
0z 0z .

dz =—dr +—d0+—d¢ (cos@)dr — (rsin 8)d O
or 00 o¢

Hence, the unit vector along the r-direction is

2 2 2
= RI_ (ﬁj +(@j +(gj =\/(sin9cos¢)2 +(sin@sing)’ +(cos @)’ =1 (16)
or or or or
oR ox, Oy, 07.
— — X+ ¥+ 2
a_ Or ___Or ___0Or  _Or

-

oR oxY (oyY (ozY

RORERE

_ (sin @cos ¢ )k + (sin Osin g)§ +(cos )z (17
\/ (sin@cos ¢)’ +(sin @sin g)’ + (cos §)’

= (sin @ cos ¢ )k + (sin Osin ¢ )y +(cos O)z

Similarly the unit vector along the 6 -direction is

h, :‘Z—I; =\/(§—Zj +(%) +(ﬁj =\/(rcosﬁcos¢)2 +(rcos@sing)’ +(rsin@)’ =r (18)

00
OR ox ., Oy, 0z P
b— 00 _ 20 207 T 0" _ (rcos @ cos )k + (r cos @sin @)y — (rsin 0)a
oR oxY (oyY (ozY \/(rcos@cosqﬁ)z+(rcos6’sin¢75)2+(rsint9)2 (19)
ol ) +(35) ()

= (cos @ cos ¢ )% + (cos @sin @)y — (sin §)2
and the unit vector along the ¢ -direction is

’ :‘Z_l; :\/(S—ZJ (2;) (S;J \/(rsinélsingzﬁ)2 +(rsin@cosg)’ = rsind (20)

R @ oy § 81 5

b o _ a¢ a¢ a¢ _ —(rsinBsin g} +(rsin Ocos )y
oR ay & ? \/ (rsin@sing)’ +(rsinfcos gy’ (21)
o¢ a¢ a¢
(sm ¢ cos ¢)y

Therefore,

Gradient:

ATAEE A LA S (22)

or r 06 rsin@ o0¢
Divergence:
vF=L20F)—L % (na Lok, (23)

rror. " rsinf 06 °7" rsin@ 8¢
Curl:
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1 o oF, . 1[ 1 oF o, |l 1[0 oF, 1.
VxF = 9 (sinor,)- Lo g L) L O (p)a L O (g9
g 'e{ae(sm ! a¢}”r{sm9 o¢ o ¢)} +r{8r(r /) ae}"

rsin
(24)
Laplacian:
2
ver=L1 a(rza—TjJr — (S'nﬁa—Tj+—2 .12 af (25)
r* or or) r’sin@ o6 00) r-sin” 0 0¢

(2) Cylindrical coordinates

Fig. 10 shows the relationship between the cylindrical
coordinates and the Cartesian coordinates. The
cylindrical coordinates (p, ¢, z) of a point have the
following relationships with rectangular coordinates:

X=pcos¢
y=psing (26)
=2
We have the following relations
ox
dx=—d +—d +—d =(cosg)d in@)d
op Pt g0t G (cos ¢)dp —(psing)dg
dy=de+ﬂd¢+@dz:(sin¢)dp+(pcos¢)d¢ %
op 5¢ 0z Fig. 10
0z
dz=—dp+—dp+—dz=d
appa¢¢azz @7)

Hence the unit vector along the p-direction is

hp=a—R=\/(ﬁj +(@j +(zj =+Jcos’ g+sin’ ¢ =1 (28)
op op op op
R A ook,
s o ' " (cospR(sing)y
R oeY (ay) (o) cos®g+sin’g (29)
o &) (5 &
p p p
= (cos gk + (sin g )y

Similarly the unit vector along the 6 -direction is

hy =18 :\/(ﬂj (ayJ (OZ] =(psing)’ +(pcosgp)’ = p (30)

o¢ o9 o¢ o¢
R o v by
b= 0P 0 0p” 0p~_ _-(psinglk+(pcosg)y
R o) (o) (&) Alosingl +(poosg) (31
o¢ o6) \og) \og
= —(sin §)X + (cos g )y
In the z-direction A, = 1. Therefore
Gradient:
av 1 6V 8V
Vv= —— i 32
¢,0 5¢ e (32)
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Divergence:
OF
V-F=li(pr)+l—¢+% (33)
p op pop Oz
Curl:
OF, oF ~ oF
V=t O Pl 1 OF g 11O (p) el (34)
pl| 09 0Oz 0z Op Pl op o¢
Laplacian:
2 2
VZT:li pa—T +L26 €+6Z (35)
pop\’ Op) p 0¢~ 0z

Example 1 Verify the divergence theorem for a vector field
F =rtkr over the shell region enclosed by spherical surfaces
at r = Ry and r = R, where R; < R,, centered at the origin.

Example 2 Show that Vx A =0 if

(a) A= &)E in cylindrical coordinates, where k is a constant.
o)

(b) A =rf(r)in spherical coordinates, where f(r) is a function of only r.

Example 3 Given a vector function A = $3 sin(¢/2), verify the Stokes’ theorem over
the unit circle counterclockwise contour centered at (0,0) on the xy-plane.

Example 4 Verify Stokes’ theorem for a vector "
field A = ppcos g+ dpsing over the path shown in
Fig. 12.




