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Static Electric Fields 
Electrostatics is the study of the effects of electric charges at rest, and the static electric fields, 

which are caused by stationary electric charges. 

In the deductive approach, few fundamental relations for an idealized model are postulated as 

axioms, from which particular laws and theorems can be derived. Then the validity of the 

model and the axioms are verified by the experiments. The steps involved in building a theory 

based on an idealized model are as follows: 

1. Define some basic quantities. (E, q) 

2. Specify the rules of operations. (Vector analysis) 

3. Postulate some fundamental relations. (Divergence equation, Curl equation) 

3-2 Electrostatics in Free Space 

Here, electric field in free space is considered. Noted that the permittivity
1
 of the free space, 

denoted by ε0, is equal to (1/36π)×10
-9

 = 8.854×10
-12

 (F/m). 

First, electric field intensity is defined as the force per unit charge that a very small 

stationary test charge experiences when it is placed in a region where an electric field exists. 

That is, 
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Thus, E is proportional to and in the direction of the force F. Notice that the unit 

Newton/Coulomb = V/m. An inverse relation of (3-1) gives 

EF q= (N)        (3-2) 

The two fundamental postulates of electrostatics in free space specify the divergence and the 

curl of E. They are 

0ε
ρv=⋅∇ E         (3-3) 

and 

0E =×∇ ,        (3-4) 

where ρv denotes the volume charge density with the unit (C/m
3
). The definition of ρv is given 

by 
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(3-4) asserts that static electric fields are irrotational whereas (3-3) implies that a static 

electric field is not solenoidal. These two equations are point relations or in differential forms. 

Taking the volume integral of both sides of (3-3) over a volume V yields 
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where Q is the total charge contained in V. Applying the divergence theorem, one obtains 

0ε
Q

d
S

=⋅∫ sE  (Gauss’s law)      (3-6) 

which is a form of Gauss’s law. Likewise, taking the surface integral of both sides of (3-4) 

and applying Stokes’ theorem yields 

0=⋅∫C dllllE ,        (3-7) 

                                                 
1

 Permittivity is a physical quantity that describes how an electric field affects, and is affected by, a 

dielectric medium, and is determined by the ability of a material to polarize in response to the field, and 

thereby reduce the total electric field inside the material. Thus, permittivity relates to a material's ability 

to transmit (or "permit") an electric field. 
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which asserts that “the scalar line integral of the static electric field intensity around any 

closed path vanishes”. (3-6), (3-7) are of integral forms. Since the scalar product E·dl 

integrated over any path is the voltage along that path, i.e.,  

∫ ⋅=
C

dV lE   (V), 

thus (3-7) is equivalent to Kirchhoff’s voltage law, i.e., the algebraic sum of voltage drops 

around any closed circuit is zero. 

3-3 Coulomb’s Law 
Consider a single point charge q at rest in boundless free space. In order to find the electric 

field intensity due to q, a spherical surface of an arbitrary radius r centered at qa 

hypothetical enclosed surface (a Gaussian surface) around the source is drawn, upon which 

Gauss’s law is applied to determine the field. Since a point charge has no preferred directions, 

its electric field must be everywhere radial and has the same intensity at all points on the 

spherical surface. Applying (3-6) to Fig. 1 (a) yields 
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Fig. 1 

From (3-8), the electric field intensity of a point charge is in the outward radial direction and 

has a magnitude proportional to the charge and inversely proportional to the square of the 

distance from the charge. If the charge q is not located at the origin, referring to Fig. 1(b), one 

obtains the electric field intensity at point P to be 
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Example 3-1 Determine the electric field intensity at P(-0.2,0,-2.3) due to a point charge of 

+5 (nC) at Q(0.2,0.1,-2.5) in air. All dimensions are in meters. 
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When a point charge q2 is placed in the electric field of another point charge q1, a force F12 is 

experienced by q2 due to E12 of q1 at q2, which is given by 
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(3-13) is a mathematical form of Coulomb’s law : the force between two point charges is 

proportional to the product of the charges and inversely proportional to the square of the 

distance of separation. 

Example 3-2 The electrostatic deflection 

system of a cathode-ray oscillograph is 

depicted in the right figure. Electrons from 

a heated cathode are given an initial 

velocity 00
ˆuzu =  by a positively charged 

anode. The electrons enter at z=0 into a 

region of deflection   
plates where a uniform electric field dd EyE ˆ−= is maintained over a width w. Ignoring 

gravitational effects, find the vertical deflection of the electrons on the fluorescent screen at 

z=L. 

 

 

 

 

 

 

 

 

3-3.1 Electric field due to a system of discrete charges 
Suppose an electrostatic field is created by a group of n discrete point charges, q1, q2, …, qn, 

located at different positions, the principle of superposition can be applied to find the total 

electric field due to this system of discrete charges, which is given by 
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3-3.2 Electric field due to a continuous distribution charges 
The electric field caused by a continuous distribution of charge as shown in the figure on the  

right can be obtained by integrating the contribution of 

an element of charge over the charge distribution. Let 

ρv be the volume charge density (C/m
3
), then the 

electric field intensity due to qdv’ at P is given by 
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For the charge distributed on a surface with a surface charge density ρs (C/m
2
) (3-16) 

becomes 
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For a line charge with a line charge density ρl (C/m), (3-16) becomes 
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Example 3-3 Determine the electric field of an infinitely long, 

straight, line charge of uniform density ρl (C/m) in air 

 

 

 

3-4 Gauss’s Law and Applications 
Gauss’s law follows directly from (3-3) and is given by 

 
0ε

Q
d

S
=⋅∫ sE          (3-6) 

Gauss’s law asserts that the total outward flux of the E-field over any closed surface in free 

space is equal to the total charge enclosed in the surface divided by ε0. The surface S can be 

hypothetical closed surface chosen for convenience, not necessarily be a physical surface. 

Gauss’s law is useful in determining E when the normal component of the electric field 

intensity is constant over an enclosed surface. The first step to apply Gauss’s law is to choose 

such surface, referred to as a Gaussian surface, and then evaluate both sides of (3-6) in order 

to determine E. 

Example 3-4 Use Gauss’s law for Example 3-3 
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Example 3-5 Determine the electric field 

intensity due to an infinite planar charge 

with a uniform surface charge density ρs. 

 

 

 

 

 

Example 3-6 Determine the E field due to a spherical cloud 

of electrons with a volume charge density ρ0 inside and 0 

outside. 

 

 
 

3-5 Electric Potential 

Since ( ) 0≡∇×∇ V and 0E =×∇  in electrostatics, one can define a scalar electric potential 

V from (3-4) such that 

V−∇=E          (3-26) 

Electric potential is related to the work in carrying a charge from one point to another. Since 

the electric field intensity is the force acting on a unit test charge, the work required to move a 

unit charge from point P1 to P2 is given by 
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Since the static electric field is “conservative”, the line 

integral on the right does not depend on the integration 

path, for instance integrations along path 1 and path 2 

give the same result. 
 

Analogous to the concept of potential energy in mechanics, (3-27) represents the difference in 

electric potential energy of a unit charge between point P2 and point P1. Let V denote the 

electric potential energy per unit charge, the electric potential, then 
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P
−==⋅∇=⋅− ∫∫∫ laE llll . Thus, a potential difference (electrostatic 

voltage) is equivalent to the electric potential energy per unit charge. Note that point P1 here 

is the reference zero-potential point. In most cases, the reference point is taken at infinity; this 

convention normally applies when the reference point is not specified explicitly. 

Observations regarding electric potential 

1. Because of the negative sign, the direction of E is opposite to the direction of increasing 

V. 
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2. The direction of V∇ is normal to 

surfaces of constant V, thus E is 

perpendicular to equipotential lines or 

equipotential surfaces.  

3-5.1 Electric Potential due to a charge distribution 
Let infinity be the reference point, then the electric potential of a point at a distance R from a 

point charge q is given by 
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The potential difference between 2 points, P2 and P1, at distances R2 and R1, respectively, is 

given by 
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The electric potential due to a system of n discrete charges, q1, …, qn, is given by 
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For continuous charge distributions in confined regions, electric potentials are given by 

∫=
'

0

'

4

1

V

v

R

dv
V

ρ
πε

(V/m) (volume charge)    (3-38) 

∫=
'

0

'

4

1

S

s

R

ds
V

ρ
πε

  (V)    (surface charge)    (3-39) 

∫=
'

0

'

4

1

L R

d
V

l
l

ρ
πε

  (V)    (line charge)     (3-40) 

Example 3-7 [Electric dipole moment] Electric potential due to an electric dipole consisting 

of charges +q and –q with a small separation of d (assume R >> d) 

 
 

 
Example 3-8 Obtain a formula for the electric field intensity on the axis of a circular disk of 

radius b that carries a uniform surface charge density ρs. 
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3-6 Material Media in Static Electric Field 
Consider energy band theory of solids based on solid state physics as shown in Fig. 2, 

electrical materials can be classified into 3 types, namely, conductors, dielectrics
2
 (or 

insulators), and semiconductors. 

 
Figure 2:  Energy band structure 

3-6.1 Conductors in Static Electric Field 

Assume that some electric charges are introduced in the interior of a good conductor. An 

electric field will be set up and create a force that causes the movement of charges. This 

movement will continue until all charges reach the conductor surface and redistribute in such 

a way that both the charge and the field inside vanish. Hence, 

0E == ;0vρ  

When there are no free charges in the interior of a conductor ( 0=vρ ), E must be zero 

according to Gauss’s law. Furthermore, under static conditions the E field on a conductor 

surface is everywhere normal to the surface, otherwise there exists a tangential force that 

moves the charges. 

Consider the boundary conditions at the interface between a conductor and free space as 

shown in Fig. 3. 

Figure 3: A conductor-free space interface 

Integrating E along the contour abcda and 

taking the limit as 0→∆h yield 

0

or0lim
0

=

=∆=⋅∫→∆

t

t
abcdah

E

wEdllllE
 

Which says that the tangential component of 

the E field on a conductor surface is zero 

under static conditions. In other words, the 

surface of a conductor is an equipotential 

surface. 

Next, integrating E on the Gaussian surface in 

the figure and taking the limit as 0→∆h : 
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ε
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n
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ESSEd =∆=∆=⋅∫ sE  

                                                 
2 A dielectric is a nonconducting substance, i.e. an insulator. The term was coined by William Whewell in 

response to a request from Michael Faraday. Although "dielectric" and "insulator" are generally considered 

synonymous, the term "dielectric" is more often used to describe materials where the dielectric polarization is 

important, such as the insulating material between the metallic plates of a capacitor, while "insulator" is more often 

used when the material is being used to prevent a current flow across it. 
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Example 3-9 A positive point charge Q is at the center of a spherical conducting shell of an 

inner radius Ri and an outer radius Ro. Determine E and V as functions of the radial distance r. 

 

 

 

 
Figure 3: Example 3-9 

3-6.2 Dielectrics in Static Electric Field 

All material media are composed of atoms with a positively charged nucleus surrounded by 

negatively charged electrons. In the absence of an external electric field, the molecules of 

dielectrics are macroscopically neutral. The presence of an electric field causes a force on 

each charged particle and results in small displacements of positive and negative charges in 

opposite directions. These are bound charges. The displacements polarize a dielectric 

material and create electric dipoles (i.e., polarization). The molecules of some dielectrics 

possess permanent dipole moments, even in the absence of an external electric field. Such 

molecules are called polar molecules, in contrast to nonpolar molecules. An example is the 

water molecule H2O. Generally, dielectric materials consist of both polar and nonpolar 

molecules (Fig. 5). 

When there is no external field, dipoles in polar dielectrics are randomly oriented 

(Fig. 6 (a)), producing no net dipole moment macroscopically. An applied electric field will 

tend to align the dipoles with the field as shown in Fig. 6 (b). producing the nonzero net 

dipole moment (Fig. 7). 

 
Fig. 5: Molecules in dielectrics 
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Figure 6: Polar molecule    Figure 7: Interior of a dielectric medium 

 

A polarization vector P is defined as 
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where N is the number of molecules per unit volume and the numerator represents the vectopr 

sum of the induced dipole moments contained in a very small volume ∆v. The vector P is the 

volume density of electric dipole moment. The dipole moment dp produces an electric 

potential 
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Thus, the potential due to the polarized dielectric is given by 
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Interpretation of the effects of the induced electric dipoles: 

1. Equivalent polarization surface charge density 

nps aP ˆ⋅=ρ  (C/m
2
) 

2. Equivalent polarization volume charge density Since 

( ) ∫∫∫ =⋅∇−=⋅−=
V

pv
VS

n dvdvdsQ ρPaP ˆ , 

Thus, one can define the polarization volume charge density as 

P⋅−∇=pvρ  (C/m
3
) 

It follows that  

( ) 0ˆcharge total =⋅∇−⋅=+= ∫∫∫∫ VS
n

V
pv

S
ps dvdsdvds PaPρρ , 

i.e., the total “free” charge of the dielectric body after polarization must remain zero. 

 

Example 3-10 The polarization vector in a dielectric sphere of radius R0 is 0
ˆPxP = . 

Determine 

a) the equivalent polarization surface and volume charge densities and 

b) the total equivalent charge on the surface and inside of the sphere 
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3-7 Electric Flux Density and Dielectric Constant 
In dielectrics, 

( )
pvv ρρ

ε
+=⋅∇

0

1
E , 

but since P⋅−∇=pvρ , ( ) vρε =+⋅∇ PE0 . 

Here, one can define a new fundamental field quantity, Electric Flux Density (or electric 

displacement) D to be 

PED += 0ε  (C/m
2
) 

It follows that 

vρ=⋅∇ D  

Applying the divergence theorem yields 

Qdvddv
V

v
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Hence, Qd =⋅∫S sD  (C) 

In linear and isotropic media, P can be given in terms of E as 

EP eχε 0=  

where eχ  is called electric susceptibility  (dimensionless). Here, D can be rewritten as 

( ) EEED εεεχε ==+= re 00 1  (C/m
2
) 

where 

0

1
ε
ε

χε =+= er
 

is called  relative permittivity or  dielectric constant (dimensionless). 

In general, dielectric materials can be classified based on the property of dielectric constants 

into 

Linear : dielectric constant doesn’t change with applied electric field ↔ non-linear 

Isotropic: dielectric constant doesn’t change with direction ↔ anisotropic 

Homogeneous: dielectric constant doesn’t change from point to point ↔ inhomogeneous 

 

3-7.1 Dielectric Strength 

If the electric field is very strong, it will pull electrons completely out of molecules. The 

electrons will accelerate under the influence of the electric field, collide violently with the 

molecular structure and avalanche effect of ionization due to collisions may occur. The 

material will become conducting and large currents may result; this phenomenon is called a 

dielectric breakdown. The maximum electric field intensity that a dielectric material can 

withstand without breakdown is the dielectric strength. For instance, the dielectric strength of 

air at the atmospheric pressure is 3 (kV/mm). 

 

Example 3-11 Consider two spherical conductors with radii b1 and b2 (b1 > b2) that are 

connected by a conducting wire. The distance of separation between the conductors is 

assumed to be very large in comparison to b2 so that the charges on the spherical conductors 

may be considered as uniformly distributed. 

a) the charges on the two spheres, and 

b) the electric field intensities at the sphere surfaces. 
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Example 3-9* A positive point charge Q is at the center of a spherical dielectric shell, with a 

dielectric constant of  εr and (inner, outer) radii, (Ri,Ro), respectively. Determine E, V, D, P as 

functions of the radial distance r. 

 

 

 

 
Figure 8 : Example 3-9* 

 

3-8 Boundary Conditions for Electrostatic Fields 

Consider the boundary conditions at the interface between two dielectric media as shown in 

Fig. 9. 

Integrating E along the contour abcda and taking the limit as 0→∆h yield 
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which says that the tangential component of the E 
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field is continuous across the interface. If ε1, ε2  

denote the permittivities of media 1, 2, respectively, 

then 

2

2

1

1

εε
tt DD
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Next, integrating E on the Gaussian surface in the 

figure and taking the limit as 0→∆h : 
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Figure 9 : An interface between two 

media 

Thus, 

( ) snnsn DD ρρ =−=−⋅ 21212 orˆ DDa  (C/m
2
) 

where ρs denotes the surface charge density on the interface. 

Example 3-13 A lucite sheet (εr=3.2) is introduced perpendicularly in a uniform electric field 

0
ˆEo xE =  in free space. Determine Ei,Di,Pi inside the lucite. 

 
 

 

 

Example 3-14 Two dielectric media with permittivities ε1 and ε2 are separated by a charge 

free boundary. The electric field intensity in medium 1 at the point P1 has a magnitude E1 and 

makes an angle α1 with the normal. Determine the magnitude and direction of E at point P2 in 

medium 2. 
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3-9 CAPACITANCES AND CAPACITORS 

It is known from 3-6 that a conductor in a static electric field is an equipotential body 

and that charges on a conductor will distribute themselves in such a way that the 

electric field inside vanishes. Suppose the potential due to a charge Q is V, then 

increasing the total charge by a factor k only increases the surface charge density 

without changing the charge distribution. It is also noted that increasing Q also leads 

to increasing E and thus V also increases. Reciprocally, increasing V by a factor of k 

leads to increase in Q. 

∫ ∫−=⋅−= dndV s

0ε
ρ

llllE  and ∫ ∫−=⋅−= dn
k

dkkV s

0ε
ρ

llllE , 

Thus, one can conclude that the Q/V ratio remains unchanged. This ratio is called the 

capacitance of the isolated conducting body, which has the unit Farad (F), or C/V. 

Using C, one can write 

CVQ =  

Of considerable importance in practice is the Capacitor (or Condenser) as shown in 

Fig. 10. 

 
Figure 10 : A two-conductor capacitor 

Here, the capacitor consists of two 

conductors separated by free space or a 

dielectric medium. When a dc voltage 

source is applied between conductors, a 

charge transfer occurs, resulting in +Q on 

one conductor and –Q on the other. Note 

that the field lines are perpendicular to the 

conductor surfaces. Let V12 be the 

potential difference between two 

conductors, then the capacitance C is 

given by 

12V

Q
C =  (F) 

The capacitance of a capacitor depends on 

the geometry and the permittivity of the 

medium. 

Example 3-15 A parallel-plate capacitor consists of two parallel conducting plates of 

areas S separated by a uniform distance d. The space between the plates is filled with 

a dielectric of a constant permittivity ε. Determine the capacitance. 

 
 

Example 3-16 A cylindrical capacitor 
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Example 3-16* A spherical capacitor 

 
 

3-10 ELECTROSTATIC ENERGY AND FORCES 

Since electric potential at a point in an electric field is the work required to bring a 

unit charge from infinity (the reference point) to that point, to bring a charge Q2 from 

infinity against the field of a charge Q1 in free space to a distance R12 requires the 

work of amount 

11

120

2
1

120

1
2222

44
VQ

R

Q
Q

R

Q
QVQW ====

πεπε
, 

which is path-independent. The work is stored in the assembly of two charges as 

potential energy, 
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Here, if a charge Q3 is brought from infinity to a point that is R13 from Q1 and R23 

from Q2, then an additional amount of work is required that equals 
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The potential energy stored in 3 charges is given by 
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Note that V1, the potential at the position of Q1, is caused by charges Q2, Q3, and it is 

different from the V1 in the two-charge case. Using the same procedure, the potential 

energy (electrostatic energy) of a group of N discrete point charges can be given by 
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Likewise, the potential energy due to continuous charges can be given by 

J)('
2

1

'∫=
V

ve VdvW ρ
 

Since the SI unit for energy, Joule (J), is too large, a more convenient unit, electron-

volt (eV), which is the energy or work required to move an electron against a potential 

difference of one volt, i.e.,  
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J)(1060.1 (eV)1 19−×=
  is used instead. 

Example 3-17 Find the energy required to assemble a uniform sphere of charge of 

radius b and volume charge density ρv. 

 
 

 

3-10.1 Electrostatic Energy in Terms of Field Quantities 

Since vρ=⋅∇ D , ∫ ⋅∇=
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using ( ) VVV ∇+⋅∇=⋅∇ DDD yields 
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1
')(

2

1

VSVV
e dvdVVdvdvVW EDsDDD .

 
Since at least D is proportional to 1/r

2
 and V is proportional to 1/r

 
, let V’ be the sphere 

of radius r, and taking r→∞, the first term of the right hand side vanishes. Hence, 

(J)'
2

1

'∫ ⋅=
V

e dvW ED  

For a linear, isotropic medium, 

(J)'
2

1

'

2∫=
V

e dvEW ε  

Here, one can define electrostatic energy density we as 

∫==
'

32 '
2

1
;)(J/m

V
eee dvwWEw ε  

Example 3-18 A parallel-plate capacitor 

 
 

Example 3-19 A cylindrical capacitor (Figure 3) 

 

 

 

 

3-10.2 Electrostatic Forces 

Recall that Coulomb’s law governs the force between two point charges, but it might 

be hard to determine the force using Coulomb’s law in a more complex system of 

charged bodies. In such cases, the following principle is useful. 

Principle of Virtual Displacement : calculate the force on an object in a charged 

system from the electrostatic energy of the system 
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Consider an isolated system of charged conducting, as well as dielectric, bodies 

separated from one another with no connection to the outside world. The mechanical 

work done by the system to displace one of the bodies by a differential distance dl (a 

virtual displacement) is given by 

lF ddW Q ⋅=       (3-112) 

where FQ denotes the total electric force. Since it is an isolated system with no 

external supply of energy, the mechanical work must be done at the expense of the 

stored electrostatic energy, i.e., 

llllddWdW Qe ⋅=−= F .      (3-113) 

Writing the force in terms of the gradient of the work, one can write 

lllldWdW ee ⋅∇= )(        (3-114) 

Since dl is arbitrary, comparison of (3-113) and (3-114) yields
 (N)eQ W−∇=F

 
Example 3-20 the force on conducting plates of a parallel-plate capacitor 

 

 

 

 

3-11 SOLUTION OF ELECTROSTATIC BOUNDARY-VALUE PROBLEMS 

So far, techniques for determining E, D, V, etc for a given charge distribution have 

been discussed. In many practical problems, the charge distribution is not known 

everywhere. In such cases, differential equations that govern the electric potential in 

an electrostatic situation are formulated, and the boundary conditions are applied to 

obtain what are called boundary-value problems. 

3-11.1 Poisson’s and Laplace’s Equations 

In Electrostatics, 

Vv −∇==×∇=⋅∇ E0ED ;;ρ
 In linear, isotropic medium, since ED ε= ,

 
vV ρεε =∇−⋅∇=⋅∇=⋅∇ )()( ED
 

Hence, one obtains Poisson’s equation and Laplace’s equation (ρv =0 case) as 

follows: 

ε
ρ vVsPoisson −=∇ 2:)'( ; 0:)'(

2 =∇ VsLaplace
 

where ∇2
(del square) is called Laplacian operator. 

3-11.1* Uniqueness Theorem 

Uniqueness theorem asserts that a solution of an electrostatic problem satisfying its 

boundary conditions (Poisson’s equation or Laplace’s equation) is the only possible 

solution, irrespective of the method by which the solution is obtained. 

Proof Suppose a volume τ is bounded outside by a surface So which may be a surface 

at infinity. Inside the closed surface So there are a number of charged conducting 

bodies with surfaces S1, S2, …, Sn at specified potentials, as depicted in Fig. 11.  
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Figure 11 proof of 

Uniqueness theorem 

Now assume that, contrary to the uniqueness theorem, 

there are two solutions, V1 and V2, to Poisson’s 

equation in τ: 

ε
ρ

ε
ρ vv VV −=∇−=∇ 2

2

1

2 ;
 

Also assume that both V1 and V2 satisfy the same 

boundary conditions on S1, …, Sn and So. Let Vd= V1-

V2, then 

nSSdd VV
,,in in

2

1

0;0
K

==∇
τ

 
Using ( ) fff ∇+⋅∇=⋅∇ AAA and letting f=Vd, A= 

∇Vd yields  

( ) 222)()()( dddddddddd VVVVVVVVVV ∇=∇+∇=∇⋅∇+∇⋅∇=∇⋅∇
 

Integrating both sides of the equation above yields 

( ) ( )∫ ∫∫ ∇=⋅∇=∇⋅∇
S

ddddd dvVdVVdvVV
ττ

2
s

 
Since Vd = 0 on S1, S2, …, Sn  and on S0  

22 ;/1;/1; rdsrVrVr dd ∝∝∇∝∞→ . 

Thus, the integral on the left hand side vanishes. Since |∇Vd|
2
 is nonnegative, |∇Vd| 

must be identically 0, which means Vd has the same value at all points in τ as it has on 

the bounding surfaces, S1,…,Sn, where Vd=0. Thus, Vd=0 everywhere, and therefore 

V1=V2, i.e., only one solution exists. 

Example 3-21 parallel conducting plates separated by d with ρv=- ρ0y/d 

 
 

 

Example 3-22 Two infinite insulated conducting plates maintained at potentials 0 and 

V0 (Figure 12) Find the potential distribution for 0<φ <α and α <φ<2π. 

 
Figure 12 Example 3-22 

 

Example 3-23 Given the inner and outer radii of two concentric, thin, conducting, 

spherical shells (Ri, Ro), 
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Respectively, and the space between the shells is filled 

with a dielectric. Determine the potential distribution in 

the dielectric material by solving Laplace’s equation. 

 

Example 3-16** A spherical capacitor 

 
 

3-11.5 Method of Images 

The method of images is the technique applied to boundary value problems by 

replacing boundary surfaces with appropriate image charges, instead of attempting to 

solve a Poisson’s or Laplace’s equation. 

Example 3-24 Point Charges Near Conducting Planes as shown in Fig. 13 (a) 

(a) Physical arrangement

 
(b) Image charge and field lines 

Fig. 13 

A formal procedure would require the solution of Poisson’s 

equation in the y > 0 region with boundary conditions V = 0 at y = 

0 and at infinity. Here, if an appropriate image charge can be used 

to replace the conducting plane such that all boundary conditions 

are satisfied, then the solution would be obtained in a 

straightforward manner. Suppose one replaces the conductor with 

the charge –Q at (0,-d,0), then the potential at a point P(x, y, z) is 

given by 
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Note that the condition V=0 at y=0 is satisfied. Then, E for y≥0 is 

given by 

[ ] [ ] 
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Hence, the surface charge density becomes 
( ) 2/322200

2 zdx

Qd
E

y
ys

++
−==

= π
ερ . 
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Line charge near a parallel conducting cylinder 

 
Consider the problem of a line charge ρℓ located at a distance d from the axis of a 

parallel, conducting, circular cylinder of radius a. Both are assumed to be infinitely 

long. Fig. (a) shows a cross section of this arrangement. To apply the method of 

images, first observe that (1) The image must be a parallel line charge inside the 

cylinder in order to make the cylindrical surface at r = a an equipotential surface. Let 

call this image line charge ρi (2) Because of the symmetry with respect to the line OP, 

the image line charge must lie somewhere along OP, say at a point Pi, which is a 

distance di from the axis (Fig. (b)). The unknowns needed to be determined here are ρi 

and di. First, let 
l

ρρ −=i , then the potential at a distance r from a line charge of 

density ρℓ is given by 

r

r
dr

r
drEV

r

r

r

r
r

0

00

ln
2

1

2 00 πε
ρ

πε
ρ

ll ∫∫ =−=−=  

Thus, the potential at point M can be found by adding contributions of ρℓ and ρi, i.e., 

r

r

r

r

r

r
V i

i

M ln
2
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2

ln
2 0

0

0

0

0 πε
ρ

πε
ρ

πε
ρ

lll =−=  

In order for an equipotential surface to coincide with the surface r=a, ri/r must be a 

constant. The point Pi must be located such that ∆OMPi is similar to ∆OPM, i.e., ∠ 

OMPi=∠ OPM. Hence, 

constantor; =====
d

a

a

d

r

r

OP

OM

OM

OP

PM

MP iiii

 
Therefore, di=a

2
/d . The point Pi is called inverse point of P with respect to a circle of 

radius a. 

Example 3-25 Capacitance per unit length between two long parallel circular 

conducting wires of radius a 

 
 


