Homework #4 Solution
4-1. (a) Let the position vector be r'= pa = Xacos@'+yasin @', then R = zh — Xa cos ¢'—yasin ¢'
and the electric field intensity due to differential charge segment pjad¢’ is given by
JE = p,ad@' Zh—Xacos@'-yasin @'
4re, (h* +a*)*"?

>

27 p,ad@’ Zh —Xacos @'—yasin ¢'
0 4rg, (h* +a*)"? '

and the total electric field intensity is given by E = IdE =

Since _[02” cosgde'= J-Oz” sing@d@'=0, it follows that
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(b) Likewise, V can be found to be
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(c) Replacing /1 with the variable z, then calculating E =-VV yields
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Then substituting z = A, one obtains the result given in (a).
4-2. (a) Given a continuous line charge distribution, V can be found to be
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(b) Likewise, using Coulomb’s Law, one obtains
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(c) Using E=—-VV , one can obtain the same result as follows:
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(d) Take the limit as L—o0, then
limL—/2 -1, E—>p , which is the electric field intensity due to an infinitely
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long straight line with charge density Op (C/m).

4-3. (a) Using the result from problem 2 (a), with p2=(a/2)2+h2, and L=a, then the contribution from
each side of the square is given by
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Summing up contributions from all sides yield
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(b) Again, using the result from problem 2(b), the contribution from the side whose center is located
at (a/2,0,0) can be given by

2
Elz[—f(ﬁ+ihj P al? ;dzz[ﬁj +h
2 )275,d” \a? +(al2) 2

Likewise, the contribution from the side whose center is located at (-a/2,0,0) is given by
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Hence, the contributions from two sides parallel to y-axis are given by
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Using the same approach, the contributions from two sides parallel to x-axis are given by

2
E =12 p[hz al2 ;d2=(£j +h?
w5,d” \Jd® +(al2) 2




Hence, the electric field intensity due to this square line charge is given by
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(c) Replacing h with the variable z, i.e.,

1% :ﬂ{ln[%Jm/Z(a/Z)z +z° } —%m[(a/z)2 + zz]}

g,

then calculating E =—-VV yields
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Then substituting z = A, one obtains the result given in (b).

4-4. Due to the spherical symmetry, E =FE, and the Gauss’s Law can be applied.
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4-5. (a) (i) V =0 at infinity
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