
Homework #5 Solution 
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5-2. Let the region 1 denote the z≥0 region and region 2 denote the z≤0 region. 

(a) Since the interface is normal to the z axis, 
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Using the boundary condition D1n = D2n, one obtains 
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Since E1t = E2t, the tangential component of E2 equals 2ˆ5ˆ yx − . Thus, 
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(b) Let β1,β2 be the angles E1, E2 make with the interface (xy-plane) while α1,α2 are the angles they 

make with the normal to the interface (z-axis). Then, 
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(c) The energy density in each region can be found from 
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(d) At the center of the cube (3,4,-5) of side 2 m, z = -5 < 0; thus, the cube is in region 2. Hence, using 

the result from (c) yields 
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5-3. Let ρs denote the surface charge density on the plate, then 

)1022( 26

00 x

DD
E s

r ×+
===
ε

ρ
εεε

. 

The voltage between plates is then 
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Now, Q = ρsS = .02ρs, hence 
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5-4. Let S denote the area of the conducting plate. 

In fig. (a), using the boundary condition (continuity of the normal component of D) and noticing that 

D in this case has only normal component, one obtains D1 = D2 = D. Now, let +Q,-Q denote the total 

charges on the top, bottom faces, respectively, then 
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It follows that the total voltage V = V1+V2, and the capacitance is given by 
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This corresponds to the “series” capacitor case. (The calculation of capacitances here is similar to that 

for finding resistances of “parallel” resistors.) 

In fig (b), let V denote the voltage between the bottom and top plates, then 
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and the surface charge density becomes 
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Hence, the total charge on the conducting plate is given by 
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Therefore, 
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This corresponds to the “parallel” capacitor. (The calculation of capacitances here is similar to that for 

finding resistances of “series” resistors.) 

Note that the capacitance of each component can be found from 
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5-5 (a) Since the dielectric medium is uniform, and neglecting the fringing field (meaning the 

conductors look like infinitely large sheets of charge), the electric field intensity must be uniform and 



the direction is from one conductor to the other. Since the electric potential between two conductors is 

given by V0, and the separation is d, one obtains 
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(c) From the boundary condition, the surface charge density is given by dVDns /0ερ == , thus 
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(d) The capacitance becomes 
d

a
C

3

5 2

0πε= . 

5-3 (a) Since ε has no variation in the direction of E, Laplace’s equation can be applied. Thus, 
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Applying the boundary conditions: 
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(b)-(d) same as problem 4-2. 

 

5-6. Assume that the point charge is located at the point (0,0,d), then applying the method of images, 

one can replace the infinite conducting ground plane by the “image” point charge -Q located at the 

point (0,0,-d). Thus, the electric field intensity on the xy-plane is given by 
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 The surface charge density is then given by 
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(b) The total charge can be found to be 
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which has the “magnitude” as the point charge but with opposite sign. 

  


