Homework #7 Solution
1. Aligning the coaxial transmission line with the z-axis and applying the Ampere’s law

ich dt =y, LJ -ds = 1, yields
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where p denotes the distance from the center of the cross section and /,,. is the current enclosed in the
loop. Since the current distribution is symmetrical, one can separate into four regions as follows:
(a) 0 < p < aregion: Since the current enclosed here is the current in the inner conductor,
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(b) a £ p < bregion: Like case (a),
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() b £ p < b+t region: The current enclosed here is the sum of currents in the inner and outer
conductors. The current in the outer conductor is given by
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(d) p = b+t region: Since the current enclosed here is zero,
B, =0.
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2. (a) dB due to the current /df at the point (0,0,z) is given by
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Thus,
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Let z=ptant;dz = pdzt , then
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Define the angles «;, o, as shown in the figure, then B can be rewritten as



B= gzg’u—ol(cosa2 —cosa,) (3.2) :
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(b) When L—oo, the terms inside the parenthesis
approach 2, thus
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Clearly, it can also be calculated by letting o—m,
o,—0. This represents the magnetic field due to an
infinitely long straight current.

(c) Substituting £=0 in (3.1) yields
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3. The Biot-Savart law is given by
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Since r >> b, the following approximation can be applied:
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Note that
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Carrying out the 1ntegrat10n for each component yields
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Combining all components yields
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Converting to spherical coordinates yields
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which is the same as the result obtained before.
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4. (a) Notice that the direction of B is +z. Assigning a number to each side
of the loop as shown in the figure, then using the result from problem 3 of @
homework #7, one obtains B due to the sides 1 and 3 as follows: 2 X
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Likewise, B due to the side 2 is given by
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Finally, B due to the side 4 is given by
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Thus, the total magnetic flux density becomes
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(b) Using the same procedure used to determine B due to a circular loop, i.e., first finding A and then
determining B from A.

First, finding A due to the currents on sides 1 and 3:
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Since r = Xrsin @ cos @+ yrsin @sin ¢ + Zcos &
R, =X(rsinfcos¢g—x')+y(rsin 6’sin¢+%) +2rcos@.
If the point P is far away from the loop (R>>w), the following approximation can be applied:
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Likewise, 1/R; can be approximated as
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Using the approximations given above yields
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Using the same procedure to find A due to the currents on sides 2 and 4 yields
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Then applying the same approximations, one obtains
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Hence,
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Therefore,

2

5 5 sind.

2
A = Al +A2 +A% +A4 = IUOIW (_ﬁSiHQSin¢+ySinecos¢) = ¢ IUOIW
* A7y 47

Notice that if one defines a magnetic dipole m = 2w = 2IS = w? , A can be rewritten as
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which is the same as the circular loop case. Finally, determining B from A yields
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B=VxA= Holw (f'2cos6’+9sin6’):‘uLn:(chosH—i-OsinE’).
drr dr

Note that if the distance is far away from the loop (or the loop is very small), the magnetic field due to
the square loop is the same as that due to the circular loop.

5.Given H, = X2+ §6 + 24 (A/m) in the region y — x —2 < O where g, =54, 1, =24,.

Since y — x — 2 = 0 represents a plane, region 1 can be represented by y —x <2 or y < x+ 2. The vector
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normal to this plane is then given by a, = %, which can be found by defining the scalar field
flx,y) =y —x—2 and then finding the normal vector from
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since the gradient of a scalar field is in the normal direction.

@ M, =z, H, =(u, ~DH, = —%8+ §24 + 216 (A/m)
B, = H, =5u,H, =—R12.57 + §37.7 + 225.13 (uT)
) H, =H, -4, =(-2,6,4)-(-1,1,0)A/2 =42 , thus
H,=4,H, =42(110N2=-%4+§4.

Therefore, H,, =H, -H,, =(-2,6,4) - (—4,4) =X2+§2+ 4.



Applying the boundary condition H,, = H,, yields H,, = X2+ §2+Z4, and the boundary condition

B, =B, yieldsH,, =ﬂHln =%(—§(4+§74) =-X10+y10.
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Hence, H, =—X8+ §12 + 24 (A/m)and

B, = 1,H, =24, H, =—%20.11+§30.16 +210.05 (4T) .



