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the dielectric constant. Scientists and engineers usually designate the square root of
the relative permittivity as the index of refraction. Typical values of dielectric
constants at static frequencies of some prominent dielectric materials are listed in
Table 2-1.

Thus the dielectric constant of a dielectric material is a parameter that
indicates the relative (compared to free-space) charge (energy) storage capabilities of
a dielectric material; the larger its value, the greater its ability to store charge
(energy). Parallel plate capacitors utilize dielectric material between their plates to
increase their charge (energy) storage capacity by forcing extra free charges to be
induced on the plates. These free charges neutralize the bound charges on the
surface of the dielectric so that the voltage and electric field intensity is maintained
constant between the plates.

Example 2-1. The static dielectric constant of water is 81. Assuming the
electric field intensity applied to water is 1 V/m, determine the magnitudes of
the electric flux density and electric polarization vector within the water.

Solution. Using (2-9), we have
D =¢E,=81(8.854 X 1071%)(1) = 7.17 x 10719 C/m?
Using (2-12), we have
X, =¢&,—1=81~-1=280
Thus the electric polarization vector is given, using (2-10), by

P = e,x.E, = 8.854 x 10712(80)(1) = 7.08 X 10~ 12 C/m>

The permittivity of (2-11a), or its relative form of (2-12), represents values at
static or quasistatic frequencies. These values vary as a function of the alternating
field frequency. The variations of the permittivity as a function of the frequency of
the applied fields are examined in Section 2.8.1.

MAGNETICS, MAGNETIZATION, AND PERMEABILITY

Magnetic materials are those that exhibit magnetic polarization when they are
subjected to an applied magnetic field. The magnetization phenomenon is repre-
sented by the alignment of the magnetic dipoles of the material with the applied
magnetic field, similar to the alignment of the electric dipoles of the dielectric
material with the applied electric field.

Accurate results concerning the behavior of magnetic material when they are
subjected to applied magnetic fields can only be predicted by the use of quantum
theory. This is usually quite complex and unnecessary for most engineering applica-
tions. Quite satisfactory quantitative results can be obtained, however, by using
simple atomic models to represent the atomic lattice structure of the material. The
atomic models used here represent the electrons as negative charges orbiting around
the positive charged nucleus, as shown in Figure 2-7a4. Each orbiting electron can be
modeled by an equivalent small electric current loop of area ds whose current flows
in the direction opposite to the electron orbit, as shown in Figure 2-7b. As long as
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FIGURE 2-7 Atomic models and their equivalents, representing the atomic lattice structure of

magnetic material. (a) Orbiting electrons. (b) equivalent circular electric loop.
(¢) Equivalent square electric loop.

the loop is small, its shape can be circular, square, or any other configuration, as
shown in Figure 2-7¢. The fields produced by a small loop of electric current at large
distances are the same as those produced by a linear bar magnet (magnetic dipole)
of length d. i

By referring to the equivalent loop models of Figure 2-7, the angular momen-
tum associated with an orbiting electron can be represented by a magnetic dipole
moment dm; of

dm; = I,ds, = IA,ds; = #,1, ds; (A-m?) (2-13)

For atoms that possess many orbiting electrons, the total magnetic dipole moment
m, is equal to the vector sum of all the individual magnetic dipole moments each
represented by (2-13). Thus we can write that

N,, Av N,, Av
m,= Y dm,= Y Al.ds, (2-14)
i=1 i=1

where N, is equal to the number of orbiting electrons (equivalent loops) per unit
volume. A magnetic polarization (magnetization) vector M is then defined as

1 1 Nalo . Av .
N F RN o B PR [
(2-15)
Assuming for each of the loops an average magnetic moment of
dm,=dm,, =#A(Ids),, (2-16)

the magnetic polarization vector M of (2-15) can be written (assuming all the loops
are aligned in the parallel planes) as

1 N, Av
M= lim [— Y dm,|=N,dm, =iN,(Id 2-17
A:TOl:Av z m,} Ay, = AN, (1ds)a (2-17)
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FIGURE 2-8 Random orientation of magnetic dipoles and their alignment (a) in the absence of and
(b) under an applied field.
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A magnetic material is represented by a number of magnetic dipoles and thus
by many magnetic moments. In the absence of an applied magnetic field the
magnetic dipoles and their corresponding electric loops are oriented in a random
fashion so that on a macroscopic scale the vector sum of the magnetic moments of
(2-14) and the magnetic polarization of (2-15) are equal to zero. The random
orientation of the magnetic dipoles and loops is iltustrated in Fig. 2-8a. When the
magnetic material is subjected to an applied magnetic field, represented by the
magnetic flux density B, in Figure 2-8b, the magnetic dipoles of most material will
tend to align in the direction of the B, since a torque given by

|AT| = |dm; X B,| = |dm,| |Ba|sm(‘»bi) =|(ﬁili ds;) X Bu| =lIi ds; B, Sin(‘l’i)l
(2-18)

will be exerted in each of the magnetic dipole moments. This is shown in the insert
to Figure 2-8b. Ideally, if there were no other magnetic moments to consider, torque
would be exerted. The torque would exist until each of the orbiting electrons shifted
in such a way that the magnetic field produced by each of its equivalent electric
loops (or magnetic moments) was aligned with the applied field and its value
represented by (2-18) vanished. Thus the resultant magnetic field at every point in
the material would be greater than its corresponding value at the same point when
the material is absent.

The magnetization vector M resulting from the realignment of the magnetic
dipoles is better illustrated by considering a slab of magnetic material across which
a magnetic field B, is applied, as shown in Figure 2-9. Ideally, on a microscopic
scale, for most magnetic material all the magnetic dipoles will align themselves so
that their individual magnetic moments are pointed in the direction of the applied
field, as shown in Figure 2-9. In the limit, as the number of magnetic dipoles and
their corresponding equivalent electric loops become very large, the currents of the
loops found in the interior parts of the slab are canceled by those of the neighboring
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FIGURE 2-9 Magnetic slab subjected to an applied magnetic field and
the formation of the magnetization current density J,,..

loops. On a macroscopic scale a net nonzero equivalent magnetic current, resulting
in an equivalent magnetic current surface density (A/m), is found on the exterior
surface of the slab. This equivalent magnetic current density J,,,; is responsible for
the introduction of the magnetization vector M in the direction of B,.

The magnetic flux density across the slab is increased by the presence of M so
that the net magnetic flux density at any interior point of the slab is given by

B = po(H, + M) (2-19)

It should be pointed out that M, as given by (2-15), has the units of amperes per
meter and correspond to those of the magnetic field intensity. In general, we can
relate the magnetic flux density to the magnetic field intensity by a parameter that is
designated as u, (henries/meter). Thus we can write that

B =pH, (2-20)
Comparing (2-19) and (2-20) indicates that M is also related to H, by
M =x,H, (2-21)

where x,, is called the magnetic susceptibility (dimensionless quantity).
Substituting (2-21) into (2-19) and equating the result to (2-20) leads to

B =po(H, + x,H,) = po(l + x,,)H, = pH, (2-22)

Therefore we can define

By =po(1 + x,,) (2-22a)
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Approximate static relative permeabilities of magnetic materials

Material Class Relative permeability (u,,)
Bismuth Diamagnetic 0.999834
Silver Diamagnetic 0.99998
Lead Dianagnetic 0.999983
Copper Diamagnetic 0.999991
Water Diamagnetic 0.999991
Vacuum Nonmagnetic 1.0

Air Paramagnetic 1.0000004
- Aluminum Paramagnetic 1.00002
Nickel chloride ~ Paramagnetic 1.00004
Palladium " Paramagnetic 1.0008
Cobalt Ferromagnetic 250
Nickel Ferromagnetic 600
Mild steel Ferromagnetic 2,000
Iron Ferromagnetic 5,000
Silicon iron Ferromagnetic 7,000
Mumetal Ferromagnetic 100,000
Purified iron Ferromagnetic 200,000
Supermalloy Ferromagnetic 1000,000
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In (2-22a) p, is the static permeability of the medium whose relative value u,,
(compared to that of free space ) is given by

H’sr=_=1+Xm

B
Ko

Static values of u,, for some representative material are listed in Table 2-2.
Within the material, a bound magnetic current density J,, is induced that is
related to the magnetic polarization vector M by

J,=V XM (A/m’)

(2-23)

(2:24)

To account for this current density, we modify the Maxwell-Ampere equation
1-71b and write it as

VXxH=J+J +3J,+J,=J,+0E+V XM + jweE

On the surface of the material, the bound magnetization surface current density

is related to the magnetic polarization vector M at the surface by

A

where #

Jms =M X ﬁ'surface (A/m)

(2-24a)

J

ms

(2-25)

is a unit vector normal to the surface of the material. The bound

magnetization current I, flowing through a cross section S, of the material can be
obtained by using

Im=ffSJm-ds=ffso(V x M) * ds (A)

(2-26)
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In addition to orbiting, the electrons surrounding the nucleus of an atom also
spin about their own axis. Therefore magnetic moments of the order of +9 x 10~ 2*
A-m? are also associated with the spinning of the electrons that aid or oppose the
applied magnetic field (the + sign is used for addition and the — for subtraction).
For atoms that have many electrons in their shells, only the spins associated with
the electrons found in shells that are not completely filled will contribute to the
magnetic moment of the atoms. A third contributor to the total magnetic moment
of an atom is that associated with the spinning of the nucleus, which is referred to as
nuclear spin. However, this nuclear spin magnetic moment is usually much smaller
(typically by a factor of about 107?) than those attributed to the orbiting and the
spinning electrons.

Example 2-2. A bar of magnetic material of finite length, which is placed
along the z axis as shown in Figure 2-10, has a cross section of 0.3 m in the x
direction (0 < x < 0.3) and 0.2 m in the y direction (0 < y < 0.2). The bar is
subjected to a magnetic field so that the magnetization vector inside the bar is
given by

M=4,(4y)

Determine the volumetric current density J,, at any point inside the bar, the
surface current density J,,, on the surface of each of the four faces, and the
total current I, per unit length flowing through the bar face that is parallel to
the y axis at x = 0.3 m.

Solution. Using (2-24), we have

FIGURE 2-10 Magnetic bar of rectangular cross
section subjected to a magnetic field.
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Using (2-25), we have
Jms =M X ﬁ'surface

Therefore at

x=0: A
3, =(34y) X (—a)| .o = —4,(4y) for0 <y <02
y=0: /
3 =(a4y) X (=4,)|,_,=d,(4y) =0 for0 < x < 0.3
| x=0.3:
3. =(a4y) X (d,)|,_05 = 4,(4y) for0 <y <02
y=0.2

s =(84y) x (4,)|,_p, = —8.(4y) = 4,08 for0<x<03

According to (2-26) the current (per unit length) flowing through the bar face
at x = 0.3 is given by

x = 0.3: '

I, = ffSJm - ds = folfoo‘z(ax4) (4. dydz) = 4(1)(02) = 0.8

Consistent with the relative permittivity (dielectric constant), the values of p,
and thus g, vary as a function of frequency. These variations will be discussed in
Section 2.8.2. The values of p, listed in Table 2-2 are representative of frequencies

- related to static or quasistatic fields. Excluding ferromagnetic material, it is appar-
ent that most relative permeabilities are very near unity, so that for engineering
problems a value of unity is almost always used.

According to the direction in which the net magnetization vector M is pointing
(either aiding or opposing the applied magnetic field), material are classified into
two groups, Group A and Group B as shown:

Group A Group B
-Diamagnetic Paramagnetic
Ferromagnetic
Antiferromagnetic
Ferrimagnetic

In general, for material in Group A the net magnetization vector (although
small in magnitude) opposes the applied magnetic field, resulting in a relative
permeability slightly smaller than unity. Diamagnetic materials fall into that group.
For material in Group B the net magnetization vector is aiding the applied magnetic
field, resulting in relative permeabilities greater than unity. Some of them ( para-
magnetic and antiferromagnetic) have only slightly greater than unity relative
permeabilities whereas others ( ferromagnetic and ferrimagnetic) have relative per-
meabilities much greater than unity.

In the absence of an applied magnetic field, the moments of the electron spins
of diamagnetic material are opposite to each other as well as to the moments
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associated with the orbiting electrons so that a zero net magnetic moment m, is
produced on a macroscopic scale. In the presence of an external applied magnetic
field, each atom has a net nonzero magnetic moment, and on a macroscopic scale
there is a net total magnetic moment for all the atoms that results in a magnetiza-
tion vector M. For diamagnetic material, this vector M is very small, opposes the
applied magnetic field, leads to a negative magnetic susceptibility x,,, and results in
values of relative permeability that are slightly less than unity. For example, copper
is a diamagnetic material with a magnetic susceptibility x,,= —9 X 1076 and a
relative permeability p, = 0.999991.

In paramagnetic material, the magnetic moments associated with the orbiting
and spinning electrons of an atom do not quite cancel each other in the absence of
an applied magnetic field. Therefore each atom possesses a small magnetic moment.
However, because the orientation of the magnetic moment of each atom is random,
the net magnetic moment of a large sample (macroscopic scale) of dipoles, and the
magnetization vector M, are zero when there is no applied field. When the paramag-
netic material is subjected to an applied magnetic field, the magnetic dipoles align
slightly with the applied field to produce a small nonzero M in its direction and a
small increase in the magnetic flux density within the material. Thus the magnetic
susceptibilities have small positive values and the relative permeabilities are slightly
greater than unity. For example, aluminum possesses a susceptibility of x, =

-2 X 107° and a relative permeability of g, = 1.00002.

The individual atoms of ferromagnetic material possess, in the absence of an
applied magnetic field, very strong magnetic moments caused primarily by uncom-
pensated electron spin moments. The magnetic moments of many atoms (usually as
many as five to six) reinforce one another and form regions called domains, which
have various sizes and shapes. The dimensions of the domains depend on the
material’s past magnetic state and history, and range from 1 um to a few millime-
ters. On a macroscopic scale, however, the net magnetization vector M in the
absence of an applied field is zero because the domains are randomly oriented and
the magnetic moments of the various atoms cancel one another. When a ferromag-
netic material is subjected to an applied field, there are not only large magnetic
moments associated with the individual atoms, but the vector sum of all the
magnetic moments and the associated vector magnetization M are very large,
leading to extreme values of magnetic susceptibility x,, and relative permeability.
Typical values of p, for some representative ferromagnetic material are found in
Table 2-2. When the applied field is removed, the magnetic moments of the various
atoms do not attain a random orientation and a net nonzero residual magnetic
moment remains. Since the magnetic moment of a ferromagnetic material on a
macroscopic scale is different after the applied field is removed, its magnetic state
depends on the material’s past history. Therefore a plot of the magnetic flux density
% versus 5 leads to a double-valued curve known as the hysteresis loop. Material
with such properties are very desirable in the design of transformers, induction
cores, and coatings for magnetic recording tapes.

- Materials that possess strong magnetic moments, but whose adjacent atoms
are about equal in magnitude and opposite in direction, with zero net total magnetic
moment in the absence of an applied magnetic field, are called antiferromagnetic.
The presence of an applied magnetic field has a minor effect on the material and
leads to relative permeabilities slightly greater than unity.

If the adjacent opposing magnetic moments of a material are very large in
magnitude but greatly unequal in the absence of an applied magnetic field, the
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material is known as ferrimagnetic. The presence of an applied magnetic field has a
large effect on the material and leads to large permeabilities (but not as large as
those of ferromagnetic material). Ferrites make up a group of ferrimagnetic materi-
als that have low conductivities (several orders smaller than those of semiconduc-
tors). Because of their large resistances, smaller currents are induced in them that
result in lower ohmic losses when they are subjected to alternating fields. They find
wide applications in the design of nonreciprocal microwave components (isolators,
hybrids, gyrators, phase shifters, etc.) and they will be discussed briefly in Section
2.8.3.

CURRENT, CONDUCTORS, AND CONDUCTIVITY

The prominent characteristic of dielectric materials is the electric polarization
introduced through the formation of electric dipoles between opposite charges of
atoms. Magnetic dipoles, modeled by equivalent small electric loops, were intro-
duced to account for the orbiting of electrons in atoms of magnetic material. This
phenomenon was designated as magnetic polarization. Conductors are material
whose prominent characteristic is the motion of electric charges and the creation of
a current flow.

Current

Let us assume that an electric volume charge density, represented here by g, is
distributed uniformly in an infinitesimal circular cylinder of cross-sectional area As
and volume AV, as shown in Figure 2-11. The total electric charge AQ within the
volume AV is moving in the z direction with a uniform velocity v,. Thus we can
write that

AQ, AV AsAz A Az
Ar  Poar TYTa Ty

(2-27)

f =

As

FIGURE 2-11 Charge uniformly distributed in an
infinitesimal circular cylinder.



