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Magnetostatics 
5-1 Overview 

When a small test charge q is placed in an electric field E, it experiences an electric force Fe, which is 

a function of the position of q. 

EF qe = (N) 

When the test charge is in motion in a magnetic field characterized by a magnetic flux density B, 

experiments show that charge q also experiences a magnetic force Fm given by 

BuF ×= qm (N), 

where u (m/s) is the velocity of the moving charge, and B is measured in webers per square meter 

(Wb/m
2
) or Teslas (T). The total electromagnetic force on a charge q is then, 

)( BuEFFF ×+=+= qme (N), 

which is called Lorentz’s force equation. Recall that E can be defined as Fe/q, one can define B as 

u×B = Fm/q. 

Charges in motion produce a current that creates a magnetic field, i.e., static magnetic fields are 

created by steady currents, which can be regarded as magnetic charges (as analogous to electric 

charges). 

5-2 Fundamental Postulates of Magnetostatics in Free Space 

The two fundamental postulates specifying the divergence and the curl of B in nonmagnetic media 

(e.g., free space) are 

0=⋅∇ B  (1) ;  JB 0µ=×∇  (2), 

where µ0 = 4π×10
-7

 (H/m). Note that 

0)( 0 =⋅∇=×∇⋅∇ JB µ , i.e., 0=⋅∇ J , 

which is consistent with the condition for steady currents. Taking the volume integral of (1) and 

applying the divergence theorem yield 

0=⋅∫S dsB , 

which implies that there are no magnetic flow sources and the magnetic flux lines always close upon 

themselves. This is also referred to as the law of conservation of magnetic flux. 

Taking the surface integral of (2) and applying Stokes’ theorem yield 

Idd
SC

00 µµ =⋅=⋅ ∫∫ sJlB , 

which states that the circulation of the magnetic flux density in a nonmagnetic medium around any 

closed path is equal to µ0 times the total current flowing through the surface bounded by the path. 

This is a form of Ampere’s circuital law. 

EX 5-1 An infinitely long, straight, solid, nonmagnetic conductor with a circular cross section of 

radius b carries a steady current I. Determine the magnetic flux density both inside and outside the 

conductor. 
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EX 5-2 Determine the magnetic flux density inside a closely wound toroidal coil with an air core 

having N turns of coil and carrying a current I. The toroid has a mean radius b, and the radius of each 

turn is a. 

  
 

 

5-3 Vector Magnetic Potential 

The divergence-free postulate of B assures that B is solenoidal. Thus, B can be rewritten as 

AB ×∇= , 

where A is called the vector magnetic potential. Its SI unit is Wb/m. Using A yields 

JAB 0µ=×∇×∇=×∇ . 

Since AAA 2)( ∇−⋅∇∇=×∇×∇ , JAAA 0

2)( µ=∇−⋅∇∇=×∇×∇ . 

Choosing 0=⋅∇ A , which is called the Coulomb condition for A⋅∇ , yields 

JA 0

2 µ−=∇ : vector Poisson’s equation 

Recall that the solution to the Poisson’s equation 
0

2 /ερvV −=∇ is given by 

∫=
'

0

'
4

1

V

v dv
R

V
ρ

πε
.  

Using this result, the solution to the vector Poisson’s equation can be obtained as 

∫=
'

0 '
4 V

dv
R

J
A

π
µ

(Wb/m). 

Vector potential A is related to the magnetic flux Φ as 

∫∫∫ ⋅=⋅×∇=⋅=Φ
CSS

ddd lAsAsB  (Wb). 

5-4 The Biot-Savart Law and Applications 

Here, the magnetic field due to a current-carrying circuit is of interest. For a thin wire with cross-

section area S, dv’ equals Sdl’, and the current flow is entirely along the wire. It follows that 

''' llllllll IdJSddv ==J , and the vector potential is given by 

∫=
'

0 '

4 C R

dI llll

π
µ

A  (Wb/m). 

The magnetic flux density B is then 

∫∫ ×∇=×∇=×∇=
'

0

'

0 '

4

'

4 CC R

dI

R

dI llllllll

π
µ

π
µ

AB . 

Applying the vector identity AAA ×∇+×∇=×∇ fff yields 

'
1

'
1

'
1'

llllllllllll
llll

d
R

d
R

d
RR

d
×∇=×+∇×∇=×∇ . 

Since 
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23

ˆ1
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−=−=∇ , ∫∫
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dI

R

dI aR
B

llllllll
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It can also be written as 

2

0

3

0

'

ˆ'

4

'

4
;

R

dI

R

dI
dd R

C

aR
BBB

×
=

×
== ∫

llllllll

π
µ

π
µ

. 

EX 5-3 A direct current I flows in a straight wire of length 2L. Find the magnetic flux density B at a 

point located at a distance r from the wire in the bisecting plane: (a) by determining the vector 

magnetic potential A first, and (b) by applying the Biot-Savart law. 

 
 

 

EX 5-4 Find the magnetic flux density at the center of a planar square loop, with side w carrying a 

direct current I. 

 
EX 5-5 Find the magnetic flux density at a point on the axis of a circular loop of radius b that carries a 

direct current I. 

 

5-5 The Magnetic Dipole 
EX 5-6 Find the magnetic flux density at a distant point of a small circular loop of radius b that carries 

a current I (a magnetic dipole). 

 
 

The vector potential is given by 

∫=
C R

dI l'l'l'l'

π
µ
4

0A , 

where ''ˆ')'cosˆ'sinˆ( φφφφ bdbdd φφφφ=+−= yx''''llll , and 

ψφφθ cos2)'cos(sin2 22222 rbbrrbbrR −+=−−+=  since 

ψφφθ
θφθφθφφ

cos)'cos(sin

)cosˆsinsinˆcossinˆ()'sinˆ'cosˆ(

ˆ'ˆ'ˆ

brbr
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zyxyx
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Since φπφφφφφφφφ
ππ

sin')]'2sin([sin
2

1
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=−+=− ∫∫ dd , 

∫ ∫ =−+=−
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A
×

== φφφφ ; mISbI zzzm ˆˆˆ 2 ==== π : magnetic dipole moment 

Thus, )sinˆcos2ˆ(
4 3

0 θθ
π
µ

θrAB +=×∇=
r

m
. Note that dpθrE q

r

p
=+= );sinˆcos2ˆ(

4 3

0

θθ
πε

. 

5-6 Magnetization and Equivalent Current Densities 

Magnetic materials are those that exhibit magnetic polarization when they are subjected to an applied 

magnetic field. The magnetization phenomenon is represented by the alignment of the magnetic 

dipoles of the material with the applied magnetic field, similar to the alignment of the electric dipoles 

of the dielectric material with the applied electric field. 

The commonly used atomic models represent the electrons as negative charges orbiting around the 

positive charged nucleus, as shown in the figure below. Each orbiting electron can be modeled by an 

equivalent small electric current loop, i.e., a magnetic dipole moment. 

 
Figure Atomic models and their equivalents (Left) Orbiting electrons (Center) equivalent circular 

electric loop (Right) equivalent square electric loop 

In the absence of external magnetic field, the directions of magnetic dipole moments are random 

resulting in no net magnetic moment, as shown below. The application of external magnetic field 

causes alignment of magnetic dipole moments into the same direction. 
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Figure Random orientation of magnetic dipoles and their alignment (Left) in the absence of and 

(Right) under an applied field. 

Similar to the polarization vector, the magnetization vector is defined as 

)(A/mlim 1

0 v

vN

k

k

v ∆
=

∑
∆

=

→∆

m

M  

where N is the number of atoms per unit volume and mk is the dipole moment of the k
th
 atom. The 

magnetization vector represents the volume density of magnetic dipole moments. Let dm = Mdv’, 

then 
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Thus, 

∫∫ 
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Using AAA ×∇+×∇=×∇ VVV )( , 
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Therefore, 
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×∇−×∇=
M
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Since ∫∫∫ ×−=×−=×∇
'''

'ˆ'''
S

n
SV

dsddv aFsFF , 

'ˆ
4

''
1

4 '

0

'

0 ds
R
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R
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SV
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M

MA ∫∫ ×+×∇=
π
µ

π
µ

. 
 

Figure The formation of magnetization current density 

By comparison, the magnetization surface current density and magnetization volume current density 

are defined as 

nms aMJ ˆ×= ; MJ ×∇= 'mv , respectively. (The prime symbol can be omitted.) 

Ex 5-7 Determine the magnetic flux density on the z-axis of a uniformly magnetized circular cylinder 

of a magnetic material. The cylinder has a radius b, length L, and axial magnetization 0
ˆMzM = . 
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5-7 Magnetic Field Intensity and Relative Permeability 

Accounting for the existence of Jmv, the curl equation of B can be modified as 

)()( 00 MJJJB ×∇+=+=×∇ µµ mv or 

JM
B

=







−×∇

0µ
. 

Then, the magnetic field intensity H can be defined as 

M
B

H −=
0µ

(A/m). 

The curl equation can be rewritten as JH =×∇ (A/m
2
), and the Ampere’s circuital law becomes 

Id
C

=⋅∫ lH (A). 

In the same manner as defining the electric susceptibility, the magnetic susceptibility χm can be 

defined as 

HM mχ= . Then 

mrrrm χµµµµµµµµµχµ +=====+= 1/;;)1( 0000 HHHB  

where µr is the relative permeability. 

Magnetic Material Magnetic materials are categorized as follows: 

• Diamagnetism χm < 0, µr ≈ 1 : Copper, lead 

• Paramagnetism χm > 0, µr ≈ 1 : Tungsten 

• Ferromagnetism χm >> 0, µr >> 1 : Iron 

• Ferrimagnetism χm >> 0, µr >> 1 : Ferrite 

Hysteresis The relationship between B and H 

depends on the previous magnetization of the 

material ”magnetic history”. Instead of having a 

simply linear relationship, it is only possible to 

represent it by a magnetization curve or B-H curve. 

The figure in the right shows a typical B-H curve. 

Assume that the material is initially 

unmagnetized, as H increases from point O to 

point P, B increases from 0 to reach the 

saturation; this process is represented by the 

initial magnetization curve. After that, if H is 
 

decreased, B does not follow the initial curve but “lags behind” H, which is the meaning of the Greek 

word “hysteresis”. If H is reduced to zero, B becomes Br, which is called the permanent flux density or 

the remnant flux density. The value of Br depends on Hmax and its existence is the cause of having a 

permanent magnet. B becomes zero when H is reduced to Hc, which is called the coercive field 

intensity. The materials whose Hc is small is categorized as “magnetically hard”. Further 

decrease in H to reach point Q and increasing H again to reach point P creates a hysteresis 
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loop, which varies from one material to another. The area of this loop represents the 

hysteresis loss. 
 

5-9 Boundary Conditions for Magnetostatic Fields 

Using the same approaches as before, the boundary conditions for magnetic fields can be found to be 

nn BB 21 = ; snsntt JHH JHHa =−×=− )(ˆor   21221  

In most materials (except conductors), H1t=H2t. 

 

5-10 Inductances and Inductors 

 

Consider two circuits C1, C2 with C1 carries a current I1. 

Some of magnetic flux due to I1 will pass through C2. 

This is called the mutual flux and is denoted by Φ12, 

which is given by 

∫ ⋅=Φ
2

2112
S

dsB (Wb). 

From Biot-Savart law, B is proportional to I, and Φ12 is 

thus proportional to I1. Therefore, it can be 

rewritten as 11212 IL=Φ  (Wb), where L12 is called the mutual inductance between C1 and C2. In case 

C2 has N2 turns, the flux linkage Λ12 due to Φ12 is 12212 Φ=Λ N , thus 

11212 IL=Λ , and the mutual inductance can be generalized as 

1

12
12

I
L

Λ
= (H). 

Likewise, the self inductance of loop C1 is defined as the magnetic flux linkage per unit current in the 

loop itself, i.e., 

1

11
11

I
L

Λ
= (H). 

EX 5-9 Find the inductance per unit length of a very long solenoid with air core having n turns per 

unit length. 

 
 

 

EX 5-8 Assume N turns of wire are tightly wound on a toroidal frame of a rectangular cross section 

with dimensions as shown below. Then assuming the permeability of the medium to be µ0, find the 

self-inductance of the toroidal coil. 
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EX 5-10 An air coaxial transmission line has a solid inner conductor of radius a and a very thin outer 

conductor of inner radius b. Determine the inductance per unit length of the line. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

EX 5-11 Determine the inductance per unit length of two parallel conducting wires of radius a, 

separated by d with d >> a. 
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EX 5-12 Determine the mutual inductance between a conducting rectangular loop of size w×h and a 

very long straight wire, separated by d. 

 

 

 

 

 

 

 

 

 

 

 

 

5-11 Magnetic Energy 

Consider a single closed loop with a self-inductance L1 in which the current i1 increases from zero to 

I1. An electromotive force (emf) will be induced in the loop that opposes the current change, and the 

work must be done to overcome this induced emf. Let v1 = L1di1/dt be the voltage across the 

inductance, then the work required is 

2

111
0

111
1

1111
2

11

ILidiLdti
dt

di
LdtivW

I

==== ∫ ∫∫ , 

which is stored as magnetic energy. Next, if the second loop is introduced near the first loop and its 

current i2 is increased from zero to I2, then the work involved is 

2121
0

2121
2

12112121

2

IILdiILdt
dt

di
ILdtIvW

I

±=±=±== ∫ ∫∫ , 

where L21 denotes the mutual inductance between the two loops. The ± sign depends on the direction 

of B1, B2 (I1, I2). Likewise the work related to the self-inductance of the second loop is 2/2

222 ILW = . 

Hence, the total work involved in changing (i1, i2) from (0,0) to (I1, I2) is 

2121

2

22

2

11
2

1

2

1
IILILILWm ±+= . 

For a single loop carrying a current I and has inductance L, the stored magnetic energy simply 

becomes 

2

2

1
LIWm = (J). 

The above result can be generalized for N loops carrying currents I1, …, IN, respectively, to be 

∑∑
= =

=
N

j

N

k

kjjkm IILW
1 12

1
(J) 

Note that in linear media, the flux linkage Φk is given by 

∑
=

=Φ
N

j

jjkk IL
1

, 

thus the total magnetic energy can be written as 

∑
=

Φ=
N

k

kkm IW
1

(J). 

For continuous current elements, the flux linkage Φk is given by 

k
C

kn
S

k
kk

d
'

ds 'ˆ
' ∫∫ ⋅=⋅=Φ lAaB , thus 

k
C

N

k

km
k

dIW '
2

1

1
∫∑ ⋅∆=

=

lA . 
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Since kkkkk vdaJdI ''' ∆=∆=∆ Jll , then taking the limit as N→∞ yields 

∫ ⋅=
'

'
2

1

V
m dvW JA  (J). 

Since AB ×∇= and the vector identity HAAHHA ×∇⋅−×∇⋅=×⋅∇ )( , 

)()( HABHHAAHHAJA ×⋅∇−⋅=×⋅∇−×∇⋅=×∇⋅=⋅ . Thus, 

∫∫∫∫∫ ⋅×−⋅=×⋅∇−⋅=⋅=
'''''

'
2

1
'

2

1
')(

2

1
'

2

1
'

2

1

SVVVV
m ddvdvdvdvW sHABHHABHJA . 

At very far points, the second integral vanishes because |A|,|H| fall off as 1/r,1/r
2
, respectively and the 

integrand goes to 0 as r→∞. Hence, 

)(J/m  
2

1
;(J)  ''

2

1 3

''
BHBH ⋅==⋅= ∫∫ m

V
m

V
m wdvwdvW . 

In linear, isotropic media, wm=µH
2
/2. 

EX 5-13 By using stored magnetic energy, determine the inductance per unit length of an air coaxial 

transmission line that has a solid inner conductor of radius a and a very thin outer conductor of inner 

radius b. 

 

 

 

 

 

 

 

 

Introduction to Magnetic Circuits 
Magnetic circuits can be defined analogous to electric circuits as follows: 

 Electric Circuit Magnetic Circuit 

Potential Electromotive force (emf) magnetomotive force (mmf) 

 V−∇=E ;  

∫ ⋅−=
2

1
21

P

P
dV lE  (V) 

mV−∇=H ; 

∫ ⋅−=
2

1
21,

P

P
m dV lH (A·t) 

Ohm’s law EJ σ= (A/m
2
) HB µ= (Wb/m

2
) 

Total Current ∫ ⋅=
S

dI sJ (A) ∫ ⋅=Φ
S

dsB (Wb) 

(Circuit)Ohm’s law IRV =
 

RΦ=mV
 

Resistance 

S
R

σ
l

=  (Ω) 

Conductance RG /1=  

Sµ
l

=R  (Reluctance, A·t/Wb) 

Permeance RP /1=  

Governing Equations Kirchhoff’s voltage law: 

0=⋅∫C dlE ; ∑∑ =
k

kk

j

j IRV  

Kirchhoff’s current law: 

)0(0 =⋅∇=∑ J
k

kI  

Ampere’s law: 

NId
C

=⋅∫ lH ; ∑∑ Φ=
k

kk

j

jj IN R  

Conservation of magnetic flux: 

)0(0 =⋅∇=Φ∑ B
k

k  

 

Ex Given an air-core toroid with 500 turns, a cross-sectional area of 6 cm
2
, a mean radius of 15 cm, 

and a coil current of 4 A. Find Φ, B, H. 
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Ex Consider the magnetic circuit shown below. Assuming that the core (µ = 1000µ0) has a uniform 

cross section of 4 cm
2
, determine the flux density in the air gap. 

 
 

 

 

 

 

 

Ex Consider the magnetic circuit shown below. Steady currents I1 and I2 flow in windings of, 

respectively, N1 and N2 turns on the outside legs of the core. The core has a cross-sectional area Sc and 

a permeability µ. Determine the magnetic flux in the center leg. 

 

 
 

 

 

5-12 Magnetic Forces and Torques 

5-12.1 Forces and Torques on Current Carrying Conductors 

Recall that Fm=qu×B (N), now consider an element of conductor dl with a cross-sectional area S. If 

there are N charge carriers per unit volume moving with a velocity u in the directional of dl, then the 

magnetic force on the differential element is 

|||||| 111 uBlBluBulF SNqIIddSNqdSNqd m =×=×=×= Q . 

Thus, the magnetic force on the complete circuit of contour C carrying I is given by 
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∫∫ ×==
CC

mm dId BlFF (N). 

For two circuits with contours C1,C2 carrying currents I1, I2, let B12 be the magnetic field due to I1 in 

C1 at C2, then the force F12 on circuit C2 can be written as 

∫ ×=
C

dI 122212 BlF . Since from Biot-Savart law, ∫
×

=
1

12

2

12

110
12

ˆ

4 C

R

R

dI al
B

π
µ

, 

∫ ∫∫∫
××

=
×

×=
2 1

12

1

12

2
2

12

12210

2

12

110
2212

ˆ

4

ˆ

4 C C

R

C

R

C R

ddII

R

dI
dI

allal
lF

π
µ

π
µ

(N) 

which is Ampere’s law of force. From Newton’s law of reaction, F12=-F21. 

EX 5-14 Determine the force per unit length between two infinitely long, thin, parallel conducting 

wires carrying currents I1, I2 in the same direction. The wires are separated by a distance d. 

 

 

Now, consider a small circular loop of radius b and carrying a 

current I in a uniform magnetic flux density B. It is convenient to 

decompose B into ||BBB += ⊥ as shown in figures below. The 

perpendicular component tends to expand the loop (or contract if 

I is inversed). The parallel component produces an upward force 

dF1 (out of paper) on element dℓ1 and a downward force dF2 = -

dF1 on the symmetrically located element dℓ2. Although the net 

force  

 

is zero, a torque exists that tends to rotate the loop about 

the x axis in such a way as to align the magnetic field 

(due to I) with the external B. The differential torque 

produced by dF1, dF2 is 

φφ

φφφ

dBIb

bBIdbdFd

2

||

2

||

sin2ˆ

sin2)sin(ˆsin2)(ˆ

x

xxT

=

== l

 

where dF=|dF1|=|dF2| and dℓ=|dℓ1|=|dℓ2|=bdφ. 

The total torque acting on the loop is then 

||

2

0

2

||

2 ˆsin2ˆ BbIdBIbd πφφ
π

xxTT === ∫∫ (N·m). 

Using ISbI nn aam ˆˆ 2 == π , where nâ is a unit vector in the direction normal to the plane of the loop, 

T can be rewritten as BmT ×=  (N·m). 
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EX 5-15 A rectangular loop in the xy-plane with sides 

b1,b2 carrying a current I lies in a uniform magnetic 

field zyx BBB zyxB ˆˆˆ ++= . Determine the force and 

torque on the loop. 

 

 

5-12.3 Forces and Torques in terms of Stored Magnetic Energy 

Using the principle of virtual displacement, the mechanical work FΦ·dℓ done by the system is at the 

expense of a decrease in the stored magnetic energy, Wm. (FΦ  denotes the force under the constant-

flux condition.) Thus, 

ll dWdWd mm ⋅−∇=−=⋅ΦF → mW∇−ΦF (N). 

If the circuit is constrained to rotate about an axis, e.g., the z-axis, the mechanical work done by the 

system will be (TΦ)zdφ, and 

( )
φ∂

∂
−=Φ

m

z

W
T (N·m). 

EX 5-16 Consider the electromagnet in which a current I in an 

N-turn coil produces a flux Φ in the magnetic circuit. The cross-

sectional area of the core is S. Determine the lifting force on the 

armature. 

 
 

 

 

 

Electrostatics-Magnetostatics Comparison 

Electrostatics Magnetostatics Electrostatics Magnetostatics 

Static charge q Steady current J (E,D,Fe=qE) (H,B, Fm=qu×B) 

vρ=⋅∇=×∇ D0E ;  0; =⋅∇=×∇ BJH  V−∇=E  AB ×∇=  

0ε
Q

d
S

=⋅∫ sE  Id
C

=⋅∫ lH  ∫=
'

0

'

4

1

V

v

R

dv
V

ρ
πε

 ∫=
'

0 '

4 V R

dvJ
A

π
µ

 

p=qd ISnam ˆ=  EPED εε =+= 0  HMHB µµ =+= )(0  

0/1 εεχε =+= er  0/1 µµχµ =+= mr  tt EE 21 =  nn BB 21 =  

C=Q/V L=Λ/I snn DD ρ=− 21   21 sntt JHH =−
 

2/ED ⋅=ew

 

2/HB ⋅=mw

 

eQ W−∇=F  
mW−∇=ΦF  

 


