Magnetostatics Note

Magnetostatics
5-1 Overview

When a small test charge ¢ is placed in an electric field E, it experiences an electric force F., which is
a function of the position of g.

F, = gE(N)

When the test charge is in motion in a magnetic field characterized by a magnetic flux density B,
experiments show that charge ¢ also experiences a magnetic force F,, given by

F, =quxB (N),

where u (m/s) is the velocity of the moving charge, and B is measured in webers per square meter
(Wb/m?) or Teslas (T). The total electromagnetic force on a charge g is then,

F=F +F, =qgE+uxB)N),

which is called Lorentz’s force equation. Recall that E can be defined as F./g, one can define B as
uxB =F,/q.

Charges in motion produce a current that creates a magnetic field, i.e., static magnetic fields are
created by steady currents, which can be regarded as magnetic charges (as analogous to electric
charges).

5-2 Fundamental Postulates of Magnetostatics in Free Space

The two fundamental postulates specifying the divergence and the curl of B in nonmagnetic media
(e.g., free space) are

V-B=0(1); VxB=yJ (2),

where 1 = 41x10” (H/m). Note that

V-(VxB)=y,V-J=0,ie, V-J=0,

which is consistent with the condition for steady currents. Taking the volume integral of (1) and
applying the divergence theorem yield

§SB-ds=o,

which implies that there are no magnetic flow sources and the magnetic flux lines always close upon
themselves. This is also referred to as the law of conservation of magnetic flux.
Taking the surface integral of (2) and applying Stokes’ theorem yield

§CB-dl = yOISJ-ds =u,l,

which states that the circulation of the magnetic flux density in a nonmagnetic medium around any
closed path is equal to 1y times the total current flowing through the surface bounded by the path.
This is a form of Ampere’s circuital law.

EX 5-1 An infinitely long, straight, solid, nonmagnetic conductor with a circular cross section of

radius b carries a steady current /. Determine the magnetic flux density both inside and outside the
conductor.
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EX 5-2 Determine the magnetic flux density inside a closely wound toroidal coil with an air core
having N turns of coil and carrying a current /. The toroid has a mean radius b, and the radius of each
turn is a.

5-3 Vector Magnetic Potential

The divergence-free postulate of B assures that B is solenoidal. Thus, B can be rewritten as
B=VxA,

where A is called the vector magnetic potential. Its SI unit is Wb/m. Using A yields
VxB=VxVxA=yul.

Since VxVxA =V(V-A)-V?A ,VxVxA=V(V-A)-V3A =u,J.

Choosing V- A =0, which is called the Coulomb condition for V - A, yields

V?A = —p,J : vector Poisson’s equation

Recall that the solution to the Poisson’s equation V°V = — p, 1 &,1s given by

V= ! I&dv'.
4re, V' R

Using this result, the solution to the vector Poisson’s equation can be obtained as

A:ﬂj I v W),
Az V'R

Vector potential A is related to the magnetic flux @ as

cD:LB~ds:LVxA-ds=§CA-d1 (Wh).

5-4 The Biot-Savart Law and Applications

Here, the magnetic field due to a current-carrying circuit is of interest. For a thin wire with cross-
section area S, dv’ equals Sd/, and the current flow is entirely along the wire. It follows that
Jdv'=JSdr¢'= 1d?s', and the vector potential is given by

Mol ¢ dr
=——¢ — (Wb/m).
4 §C' R ( )

The magnetic flux density B is then
[ dr 1 dr'
B=VxA=VxHf &M g, O
4r ¢ R 4r R
Applying the vector identity VX fA = fVx A +Vf x A yields

v Vg arivtcar=v<ar
R R R R

Since
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1_ R _ & B ,u01§ de'xR ,u01§ dr'xa,

R R R Azl R Azl R
It can also be written as
B =§dB;dB _ ol d/'>;R _ el a’/'xzﬁR ‘

c 47 R 47 R

EX 5-3 A direct current / flows in a straight wire of length 2L. Find the magnetic flux density B at a
point located at a distance r from the wire in the bisecting plane: (a) by determining the vector
magnetic potential A first, and (b) by applying the Biot-Savart law.

1

T o P(r, 0,0)

EX 5-4 Find the magnetic flux density at the center of a planar square loop, with side w carrying a
direct current /.

EX 5-5 Find the magnetic flux density at a point on the axis of a circular loop of radius b that carries a
direct current /.

5-5 The Magnetic Dipole

EX 5-6 Find the magnetic flux density at a distant point of a small circular loop of radius b that carries

a current / (a magnetic dipole).
i The vector potential is given by

Ip(r,e,m A:’u—olj-ﬁ,
| 4 ¢ R

i where df'=(—Xsin@'+y cos@')bd@'= ¢'bd¢', and

E R* =r>+b> —2rbsin@cos(¢—¢') =r> +b> —2rbcosy since
{ bp'r = brp't
|
|
N

b -
r 3 ’ =br(Xcos¢@'+ysing') - (Xsindcos¢@ + ¥y sin @sin ¢+ Zcos )
@SN =brsinfcos(¢p —¢') = brcosy

(—Xsin @'+y cos @' )bd @'
[ +b> = 2rbsinOcos(p— )|

Thus, A = Hol r”
4 0
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For 7 >> bz,

2 -1/2 -1/2
[r2+b2—2rbcoswrlz:1{1+b—2—2—bcosw} zl{l—z—bcosw} .
rloror r r

x<<1
Now, using (1—x)™"* = 1+ x/2 yields

[r2 +b* —2rbcos l//rl2 ~ 1{1 +écos l//:| . Thus,
r r

A= Zo_”’ rﬂ (~&sin ¢'+§ cos ¢)[1 + bsin O cos(p— ¢')/ rldg
i Y0

2 .
_ ﬂolf;zm 9 jo“ (—&sing'+§ cos ¢') cos(g — ¢)d g’
Since .[02” sing'cos(@p—¢@')d¢' = %J-Oz” [sin @ +sin(2¢'-@)|d¢' = 7 sin ¢ ,

J-OZ” cos¢@'cos(¢p— @' )dg'= %j:” [cos @ + cos(2¢'—p)]d @' = 7 cos ¢, and (T) =—Xsing+ycosg,

Aza)yolbzsinﬁz,uomxf'.

m = ZI7b* = 2IS == Zm : magnetic dipole moment

4r° 4ur®
Thus, B=V xA :Ln;l(f’2c0s9+ésint9) . Note that E :%(f200s6’+ﬁsin 0),p=qd.
471 4rg,r

5-6 Magnetization and Equivalent Current Densities

Magnetic materials are those that exhibit magnetic polarization when they are subjected to an applied
magnetic field. The magnetization phenomenon is represented by the alignment of the magnetic
dipoles of the material with the applied magnetic field, similar to the alignment of the electric dipoles
of the dielectric material with the applied electric field.
The commonly used atomic models represent the electrons as negative charges orbiting around the
positive charged nucleus, as shown in the figure below. Each orbiting electron can be modeled by an
equivalent small electric current loop, i.e., a magnetic dipole moment.
dm;=n,1;ds;

Figure Atomic models and their equivalents (Left) Orbiting electrons (Center) equivalent circular
electric loop (Right) equivalent square electric loop

In the absence of external magnetic field, the directions of magnetic dipole moments are random
resulting in no net magnetic moment, as shown below. The application of external magnetic field
causes alignment of magnetic dipole moments into the same direction.
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Figure Random orientation of magnetic dipoles and their alignment (Left) in the absence of and
(Right) under an applied field.

Similar to the polarization vector, the magnetization vector is defined as
NAv

2m,
M = lim A= (A/m)

Av—0 Av
where N is the number of atoms per unit volume and my is the dipole moment of the k™ atom. The
magnetization vector represents the volume density of magnetic dipole moments. Let dm = Mdv’,
then

AM
dA = ”OMXRd ':&Mxv'(ijdv' ’
47R* 4 R

Thus, 1 | /—f7
A=[dA- % [ M xV'(Ejdv' . /4}7 Ja
Using Vx(VA) =VV xA+VVxA, /J}-7/r4‘—7/&7/- /-417
R R ) RN/ A7 /8 PAT A AT
Therefore,

A:ﬂj LV'dev'—&j V'x(dev'.
47 V'R 4 v

.

) Ba

3
}J
s@

R
Since j V'xFdv' = —§3F x ds' = —§ Fxa ds',

U My ( M
A=-0 '[ —V>xMdv'+ 470[ L ? xa,ds'. Figure The formation of magnetization current density

By comparlson, the magnetization surface current density and magnetization volume current density
are defined as

J,, =Mxa, ]J
Ex 5-7 Determine the magnetic flux density on the z-axis of a uniformly magnetized circular cylinder
of a magnetic material. The cylinder has a radius b, length L, and axial magnetization M =ZM ;.

= V'xM, respectively. (The prime symbol can be omitted.)

mv
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5-7 Magnetic Field Intensity and Relative Permeability

Accounting for the existence of J,,, the curl equation of B can be modified as
VxB=puJ+7J,)=uJ+VxM)or

VXEE—MJ=J.
Hy

Then, the magnetic field intensity H can be defined as

H :E_M (A/m).

Hy
The curl equation can be rewritten as V x H = J (A/m?), and the Ampere’s circuital law becomes

§CH-d1=1(A).

In the same manner as defining the electric susceptibility, the magnetic susceptibility y, can be
defined as

M = y H.Then
B =+ x,)H = pou W= pM; pr = popi 0, = pl iy =1+ g,

where g is the relative permeability.

Magnetic Material Magnetic materials are categorized as follows:
Diamagnetism ¥, <0, 1 = 1 : Copper, lead

Paramagnetism ¥, >0, 1. = 1 : Tungsten

Ferromagnetism 7y, >> 0, 1. >> 1 : Iron

Ferrimagnetism ¥, >> 0, 1 >> 1 : Ferrite

Hysteresis The relationship between B and H
depends on the previous magnetization of the
material —’magnetic history”. Instead of having a
simply linear relationship, it is only possible to

1
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unmagnetized, as H increases from point O to

point P, B increases from O to reach the .
saturation; this process is represented by the

initial magnetization curve. After that, if H is

decreased, B does not follow the initial curve but “lags behind” H, which is the meaning of the Greek
word “hysteresis”. If H is reduced to zero, B becomes B,, which is called the permanent flux density or
the remnant flux density. The value of B, depends on H,,,, and its existence is the cause of having a
permanent magnet. B becomes zero when H is reduced to H., which is called the coercive field
intensity. The materials whose H, is small is categorized as “magnetically hard”. Further
decrease in H to reach point Q and increasing H again to reach point P creates a hysteresis

represent it by a magnetization curve or B-H curve. A, .
The figure in the right shows a typical B-H curve. ; a
Assume that the material is initially ! " tyetres o

I steressis Loo

i -5,

i
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loop, which varies from one material to another. The area of this loop represents the
hysteresis loss.

5-9 Boundary Conditions for Magnetostatic Fields

Using the same approaches as before, the boundary conditions for magnetic fields can be found to be
B,=B,:H,-H, =J,o0r a,xH -H,)=J,

In most materials (except conductors), H;=Hy.

5-10 Inductances and Inductors

Consider two circuits C;, C, with C; carries a current /.
Some of magnetic flux due to /; will pass through C..
This is called the mutual flux and is denoted by @,
which is given by

®,, = | B,-ds, (Wb).

From Biot-Savart law, B is proportional to /, and @, is
thus proportional to /. Therefore, it can be

rewritten as @, = L,,I, (Wb), where L, is called the mutual inductance between C, and C,. In case
C, has N, turns, the flux linkage A, due to @, is A, = N,D,,, thus
A,, = L,I,, and the mutual inductance can be generalized as

A
L, ==2{H).
Il
Likewise, the self inductance of loop C, is defined as the magnetic flux linkage per unit current in the
loop itself, i.e.,
A
L, == (H).
1,
EX 5-9 Find the inductance per unit length of a very long solenoid with air core having n turns per
unit length.

EX 5-8 Assume N turns of wire are tightly wound on a toroidal frame of a rectangular cross section
with dimensions as shown below. Then assuming the permeability of the medium to be 14, find the
self-inductance of the toroidal coil.
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EX 5-10 An air coaxial transmission line has a solid inner conductor of radius a and a very thin outer
conductor of inner radius b. Determine the inductance per unit length of the line.

. !
13
b Joe
¢ = ——h iy - A
f : &)

EX 5-11 Determine the inductance per unit length of two parallel conducting wires of radius a,
separated by d with d >> a.
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EX 5-12 Determine the mutual inductance between a conducting rectangular loop of size wxh and a
very long straight wire, separated by d.

5-11 Magnetic Energy

Consider a single closed loop with a self-inductance L; in which the current i; increases from zero to
I;. An electromotive force (emf) will be induced in the loop that opposes the current change, and the
work must be done to overcome this induced emf. Let v, = L,di,/dt be the voltage across the

inductance, then the work required is
_ o di, . . | 2
W, = jvllldt = LJEhdt = LI,L idi, _ELIII ,

which is stored as magnetic energy. Next, if the second loop is introduced near the first loop and its
current i, is increased from zero to /I,, then the work involved is

di L.
Wy, = [vyldt =+L, 1, | —rdi=tL], [ diy=+L,1,1,,
where L,; denotes the mutual inductance between the two loops. The + sign depends on the direction

of By, B, (1}, I). Likewise the work related to the self-inductance of the second loop is W, = L,I 22 /2.
Hence, the total work involved in changing (i}, i) from (0,0) to (1, I,) is

W = %Lllf + % LI;+L,II,.

For a single loop carrying a current / and has inductance L, the stored magnetic energy simply
becomes

1,0
W, =—LI*().
w =5 L0

The above result can be generalized for N loops carrying currents /i, ..., Iy, respectively, to be
1 N N

Wn = _ZZijIjIk (J)
25

Note that in linear media, the flux linkage @y is given by

N
O, =D L1,
j=1

thus the total magnetic energy can be written as
N
W, = Z(I)klk )
k=1
For continuous current elements, the flux linkage ®y is given by

o =[ B a ds, = fA-dl. thus

1 ,
Wm=5;A1k§cis-dlk.
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Since Al dl', = JAa,dl', = JAV', , then taking the limit as N—co yields
1 ,
W= [A-Jav .

Since B =V x A and the vector identity V- (AxH)=H-VxA-A-VxH,
A-J=A-VxH=H-VxA-V-(AxH)=H-B-V-(AxH). Thus,

1 1 1 1 1 ,
A =EIVA-Jdv ‘EIVH'B‘IV —EIVIV-(AXH)dv ‘EIVH'B‘IV —§§SAxH-ds .
At very far points, the second integral vanishes because |ALHI fall off as 1/r,1/r, respectively and the
integrand goes to 0 as r—o0. Hence,

1 o Cemy e 3
W, _EJ-VH-de —J-V'wmdv A w, —EH'B (J/m?).

In linear, isotropic media, wy,,= 2.

EX 5-13 By using stored magnetic energy, determine the inductance per unit length of an air coaxial
transmission line that has a solid inner conductor of radius a and a very thin outer conductor of inner
radius b.

Introduction to Magnetic Circuits
Magnetic circuits can be defined analogous to electric circuits as follows:

Electric Circuit Magnetic Circuit
Potential Electromotive force (emf) magnetomotive force (mmf)
E=-VV; H=-VV ;
P
_ _I'Rr. 3
V, = -Li E-dl (V) Vo= _LI H-dl (A1)
Ohm’s law J =oE (A/m?) B = H (Wb/m?)
Total Current I = LJ -ds(A) D = LB -ds (Wb)
(Circuit)Ohm’s law V =IR V. =0R
Resistance Y /
R=— (O R =—— (Reluctance, A-t/Wb)
o) uS
Conductance G =1/R Permeance # =1/ R
Governing Equations | Kirchhoff’s voltage law: Ampere’s law:
3€CE-d1:0; Zvj=;Rk1k jch-dl:NI; ZNj1j=;@q>k
J J
Kirchhoff’s current law: Conservation of magnetic flux:
Y1, =0(V-J=0) > D, =0(V-B=0)
3 3

Ex Given an air-core toroid with 500 turns, a cross-sectional area of 6 cm?, a mean radius of 15 cm,
and a coil current of 4 A. Find ©, B, H.

10
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Ex Consider the magnetic circuit shown below. Assuming that the core (¢ = 1000.4) has a uniform
cross section of 4 cm’, determine the flux density in the air gap.

0.2A ‘ 500 turns

1
I
1
]
1
1
]
]
]
1
I}
]

|~ L=42cm

Ex Consider the magnetic circuit shown below. Steady currents /; and I, flow in windings of,
respectively, N, and N, turns on the outside legs of the core. The core has a cross-sectional area S, and
a permeability g Determine the magnetic flux in the center leg.

4] P f;
o Sbe sy
* 1
h E I L a2
—— il ——
[T M 03 Ny =1
e :
—l |
1 i | EFE I
| Eoi i o _p*‘......_.__J

5-12 Magnetic Forces and Torques

5-12.1 Forces and Torques on Current Carrying Conductors

Recall that F,=quxB (N), now consider an element of conductor d/ with a cross-sectional area S. If
there are N charge carriers per unit volume moving with a velocity u in the directional of d/, then the
magnetic force on the differential element is

dF, = NqS|dlluxB = NgSluldlxB=1dlxB I =NgsS lul.
Thus, the magnetic force on the complete circuit of contour C carrying / is given by

11
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F, = §CdFm = I§Cdl><B (N).

For two circuits with contours C;,C, carrying currents /;, I, let B, be the magnetic field due to /; in
C, at C,, then the force F, on circuit C, can be written as

Mol dl; xa,
F,=1 ff dl, xB,, . Since from Biot-Savart law, B, =2 j; —,
4r ‘4 R},
w1 dllxﬁR] ,UII dl, xdl, xa,
F,=1, §C2 dl, x 4072_1 §Cl R ’ igcz §Cl = (N)
12 2

which is Ampere’s law of force. From Newton’s law of reaction, F,=-F,,.
EX 5-14 Determine the force per unit length between two infinitely long, thin, parallel conducting
wires carrylng currents /;, I, in the same direction. The wires are separated by a distance d.

; z+ ¢ e b
I ;_ LT
L 9 P .|i-_ " L
—> | "Bl
Fip 1 Fp |-
|
e i
| -~ o
//’ » .':!
x (] =] .
X X x B X Now, consider a small circular loop of radius b and carrying a
/ | current / in a uniform magnetic flux density B. It is convenient to
% % decompose B into B =B +B,as shown in figures below. The
perpendicular component tends to expand the loop (or contract if
I is inversed). The parallel component produces an upward force
* X dF, (out of paper) on element d¢, and a downward force dF, = -
I dF, on the symmetrically located element d¢,. Although the net
x » 5¢ ol force

is zero, a torque exists that tends to rotate the loop about
the x axis in such a way as to align the magnetic field
(due to I) with the external B. The differential torque
produced by dF, dF; is

=X(dF)2bsin ¢ = X(Id(B, sin ¢)2b sin ¢

= X2Ib*B, sin® ¢d ¢
where dF=I|dF|=IdF,| and d{=Idt,|=|d{,|=bd §.

The total torque acting on the loop is then
T=[dT =%21b°B,["sin’ jdg = & 7b" B, (N-m).
Using m=a,/ m* = a IS, where a, is a unit vector in the direction normal to the plane of the loop,

T can be rewritten as T=m xB (N-m).

12
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EX 5-15 A rectangular loop in the xy-plane with sides
by,b, carrying a current / lies in a uniform magnetic

field B=XB, +yB, +2B.. Determine the force and

torque on the loop.

5-12.3 Forces and Torques in terms of Stored Magnetic Energy

Using the principle of virtual displacement, the mechanical work F-dt done by the system is at the
expense of a decrease in the stored magnetic energy, W,,. (F¢ denotes the force under the constant-
flux condition.) Thus,

F,-dl=-dW,6=-VW, -dl ->F, -VW, (N).

If the circuit is constrained to rotate about an axis, e.g., the z-axis, the mechanical work done by the
system will be (Tq),d¢, and

ow,
(TCD )z = a ¢
EX 5-16 Consider the electromagnet in which a current / in an
N-turn coil produces a flux @ in the magnetic circuit. The cross-
sectional area of the core is S. Determine the lifting force on the
armature.

Electrostatics-Magnetostatics Comparison

Electrostatics Magnetostatics Electrostatics Magnetostatics
Static charge ¢ Steady current J (E,D,F.=¢E) (H,B, F,=quxB)
VxE=0;V-D=p, | VxH=]J;V-B=0 E=-VV B=VxA
d '
§E.dszg §H-dl:I V= I PV Azﬂj' Jav'
s &, c drg, 47 V' R
p=qd m=a_ IS D:£0E+P:eE B=y,H+M)=uH
gr:1+Ze:€/80 ﬂr:1+lm:/’l//’l0 Elr:EZI‘ Bln:BZn
Cc=0/V L=AJI D, -D,, = p, H,-H,=J,
w,=D-E/2 w,=B-H/2 F,=-VVW, F, =-VW_

13



