Uniform Plane Wave note
WAVE EQUATION

Assume time-harmonic electromagnetic fields. In source-free region, i.e., J =0; p, = 0, where the medium
is linear and isotropic (&,4),

VxE=—joB=—jouH (1);VxH=joD=jocE (2)

Taking curl of (1) yields

Vx(VXE)=—jouV xH = - jou( joeE) = o udk
UsingVx(VxA)=V(V-A)—V?A yields
Vx(VxE)=V(V-E)-V’E =-V’E = 0’ uck

Therefore,

V?E + @° u&k = 0: vector Helmholtz’s equation (vector wave equation).
Likewise, taking curl of (2) yields

Vx(VxH) = josV xE = jos(— jouH) = o usH

Thus, one obtains V?H + @’ usH = 0.

J. C. Maxwell made an assumption based on the above vector Helmholtz’s equation that there existed
propagating electromagnetic waves (1873), which was later verified by H. R. Hertz (1886).

SOLUTION OF WAVE EQUATION
In general, let the wave number k be

k*=a’us — k= u _a)_27zf 2z V= !

v oA \/E

In Cartesian coordinates, the wave equation can be written as

82 2 2
—+—5+—5+k* [E=0.
o oy’ oz

Clearly, V* denotes the Laplacian operator mentioned before. The equation above can be decomposed as
82 82 2 82 82 82 82 82 82
——+—S+—5+k* |E =0; —+—+k* |E =0 —5+—5+—5+k" |[E.=0
ox*> oy’ 07 ox’ ay 0z ox 6 oz’
which are called scalar wave equations.
Suppose the separation of variables method can be applied here, one can write Ey in terms of

E (x,y,2)= f(x)g(y)h(z)

Substituting it into the scalar wave equation for Ey yields

82 0’h 10°f 13 10
f+fh + e +kfh0 S 1o 1ok

oy’ f ox~ goy. hoz
In order for solutions to be valid everywhere, i.e., Vx,Vy,Vz, each term must be a constant. Hence,
182f k2182 kzlah
f ox’ g oy’ " h 67*

Solving the above equations yields
fi(x) = Ae ™" + Aje™ " (traveling wave); f,(x) = B, cosk x + B, sin k_x (standing wave)

+k*=0

=—kl:k; + k) + kI =k’

Obtaining g(y), h(z) using the same approach, then a general solution of E; is determined. Finally, applying

the “appropriate” boundary conditions to determine all constants, the complete solution can be obtained.

7-2 UNIFORM PLANE WAVE

One solution of the wave equation mentioned above can be written as
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E=E@ "k =%k, +Jk, + 2k ;r=%c+§y+2z

where k = kK denotes the wave number vector and K represents the propagation direction. Also, r is the
position vector, and E, is a constant vector. This electric field has the same magnitude and direction, only
its phase changes. Wavefronts (surfaces of constant phase) are “planes” of infinite extent and are parallel to
each other as shown below. Thus, they are called a Uniform plane wave.

Yy

k)

Figure 1: Phase front ves Uniform plane wave

Consider E = }?{Eoe_ij :k = Zk;r = 2z, the instantaneous electric field can be written as
& =Re[Ee’” ] = Re[RE e "“e’” ]| = RE, cos(wt — kz) .
Here, one can find a constant phase plane from @t — kz = constant . Thus, the velocity of the constant
phase plane is given by
_dz @

1

U, =—=—=——,
Podr ko \Jus

which is called the phase velocity. In free space (or air), u, =1/4/1,&, = ¢ = 3x 10° (m/s).

—jk-r

One important property of uniform plane waves E =Ee is that they are classified as transverse

electromagnetic waves (TEM waves), i.e., there is no E and H in the propagation direction, as shown in
Fig. 2. Other properties include

L k'ETO & &1=E§cos (wt = p2)|y= o
kxE L = Ej cos (- g2)
2. H=——where 1= £ denotes the intrinsic
n £

impedance (or sometimes called wave impedance)
of the medium. In free Space, it is approximately
377 (€2). The definitition of an inntrinsic impedance
is given by >}

77 — E X:: F;—Scos(mtw-ﬁz)h:o
H = Enj cos (— Bz}
3. EEH=0,i.e., E is perpendicular to H. Figure 2 Instantaneous field of a uniform plane

. . wave
Exercise Prove the above properties.

EX 7-1 A uniform plane wave with E = iExe_ij propagating in a lossless medium (g =4, 1. =1, o= 0).
Assume that it is a sinusoidal wave with frequency 100 (MHz) and has its peak of 10 (V/m) at =0 and
z=1/8 (m).

a) Write the instantaneous expression for E for any ¢ and z.

b) Write the instantaneous expression for H.
c¢) Determine the locations where FE is a positive maximum when =107 (s).
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Eiz, 0) = w10~ cos !31[‘ -1

Figure 3: Example 7-1
7-2.1 DOPPLER EFFECT

When there is relative motion between a time-harmonic source and a receiver, the frequency of the wave
detected by the receiver tends to be different from that emitted by the source. This phenomenon is known as
Doppler effect. Assume that the source (transmitter) 7 of a time-harmonic wave of a frequency f moves
with a velocity u at an angle @relative to the direct line to a stationary receiver R as shown in Fig. 4 below.
The EM wave emitted by 7 in air at =0 will reach R at

f =20
c
! 72
a '
T i) R. uAte r
(a)atr=0 T o R

(b) att = At
At a later time t=At, T has moved to the new position 7°, and the wave emitted by 7~ at that time will reach
R at

1 1 2 2 At
f = A+ = At =[r2 = 2r, (uAr) cos O + (uAr)? T sy At+r—°(1—u—cos¢9j.
c c c ,

Thus, the time elapsed at R, Az’, corresponding to Az at T is

u
At'=t, -t = At(l ——Cos 0} ,

c
which is not equal to Ar. If Ar represents a period of the time-harmonic source, i.e., At=1/f, then the
frequency of the received wave at R is

f':;:#; f(1+£cos0j; (ﬁj <<1.

At 1——cos@ ¢ ¢
c

Thus, the frequency perceived at R is higher when 7 moves toward R, and is conversely lower when T
moves away from R. The so-called red shift of the light spectrum emitted by a receding distant star in
astronomy is due to this effect. (move away -> lower frequency -> red end)

7-2.3 POLARIZATION OF PLANE WAVES

The polarization (pattern) of a uniform plane wave describes the time-varying behavior of the electric
field intensity vector at a given point in space, which can be explained in terms of the phase difference
between two perpendicular components of electric field intensity. Consider the example shown in Fig. 5,
the instantaneous electric field intensity, which is a plane wave traveling in the —z direction, is given by

E(z;1)=X6 (z31) + ygy(z;t) where
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6,(z;1) =Re[E e/ "] =Re[E,je'" e/ """ = E , cos(wt +kz+ ¢, );E, = E e’”
gy (Z;l) — Re[Eyej(rquz)] — Re[Eyoemej(wsz)] — EyO COS(a)l‘ +kz+ ¢y );Ey — Eyoem'\
Polarizations can be classified as linear, circular, or
elliptic as follows:

A Linear Polarization : the trace of E at one point draws
a line.

Ap=¢ —¢ =nr,n=0]L2,... OR
Condition '
ONLY one component (&, or &)

Example

Figure 5: Rotation of a plane EM wave.

B Circular Polarization : the trace of E at one point draws a circle. Here, the sense of rotation is also needed
to be specified, as clockwise (CW) or counterclockwise (CCW), as observed along the direction of
propagation.

.. 1/2+2n)z,n=0,12,... CW
Condition A¢ = ¢y -¢ =

AND E =E (6, 6,
~(1/2+2n)7,n=012,... CCW ~ ~

Example

C Elliptic Polarization : the trace of E at one point draws an ellipse. Here, the sense of rotation is also
needed to be specified as in the case of circular polarization.

1/2+2n)z,n=0,12,... CW
1.Ap=¢ —¢. = AND E,#E 6, 26,1
Y -1/2+2n)z,n=0,12,... CCW y :
Condition
OR 2.8p=¢ g +2nl 0 W 04142
Np=¢ - #—nx n=0+142,...
Y T2 <0 CCW
Example

7-3 PLANE WAVE IN LOSSY MEDIA

In medium which is conducting (o # 0), a current J = o E will flow because of E. The time-harmonic
equation regarding H should be changed to

VxH=(o+ jwe)E = joe E;é, =€—j£(F/m)-
1)

Therefore, ¢is replaced by the complex permittivity &. In general, complex permittivity is given by
g, =¢&-j&" (F/m),
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where both &', &' are generally functions of frequency. In conductors, since J = ok,

VxH=J+ jos'E=(c+ josE= joeEe, =+ "=,
jao w

The ratio &''/ &'is called a loss tangent because it is a measure of the power loss in the medium, i.e.,

"

&
tano, =——; o, :Loss Angle.
&
Since the permittivity is complex, it follows that the wavenumber is also complex, i.e.,

k., = o\ ue, .
Hence, the wave equation is changed to V°E + o’ ue E = V’E + kCZE = 0. Defining a new quantity

propagation constant as follows

"

1/2 1/2
y=Jjk, = joJus. =a+ jp= ja)w/yg[l+‘ij =jo ye'(l—jg—'j ;aeR, PeR,
joe £

then the wave equation can be rewritten as V’E — »°E = 0. Consider a uniform plane wave traveling in the
+z direction which has only x component, the wave equation and solution are given by

d’E .
dxzx ~7’E,=0>E =Ee” =Ee “ ",

Here, o,f are called attenuation constant, (unit: (Np/m)) and phase constant, (unit: (rad/m)), respectively,
where 1 (Np (neper)/m) means a unit wave amplitude decreases to e (0.368) after traveling 1 (m). In dB
scale, 1 (Np/m) equals attenuation rate of 20log e = -8.69 (dB/m). Note also that kK = £ in lossless media.

7-3.1 LOW LOSS DIELECTRICS

In lossless media, 0 =0 OR &''= 0. In low loss dielectric media, &''<< E'ORL' << 1. Hence,

o
RONE o 1( eV
7’=0‘+J'ﬂ=ja)«/ﬂ€'[1—j—.] = jonue' 1—j—,+—[—'] :
3 2" 8\ ¢

Therefore,
gVV a)glV
a=Relyl=w\us'—=——- ﬁ'

Np/m
SYREy (Np/m)

" 2
p=Im[y]=w ue'(l +é[8—'j ] (rad/m)
€

The intrinsic impedance and the phase velocity then become

N O e T O NP SO U P CoA
”“_\E(l Ja'j ‘\E(lﬂze'j @: u, ﬂ‘@{l 8(5'” (/s)

7-3.2 GOOD CONDUCTORS

o , O _ O
In good conductors, — >>1; ¢, = &'+—— =——_ Thus,
we jo jo

y=a+jp= jw\/ﬁ,/% = Jjouc Z%w/a),ua — (14 p[afuc

m=\/zsw/jﬂ=<l+j) BB (), == 22 ().
g, o o p HO

For instance, copper has o= 5.80x10" (S/m) and u = 47x10” (H/m) at the frequency 3 MHz, so u, =720
(m/s) and the wavelength in copper becomes
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A=l o | T )
g f fuo

Therefore, at 3 MHz, 4 = 0.24 (m), which is quite short compared to the wavelength in air at this frequency
(Ao = c/f = 100 (m)). At very high frequencies, the attenuation constant ¢ for a good conductor tends to be
very large. For example, the attenuation constant of copper at 3 (MHz) becomes

a = nfuc = Jz@ x10°) (47 x107)(5.80x107) =2.62x10* (Np/m),
which means the wave will decay very rapidly inside copper. The reciprocal of « is called the skin depth or
the depth of penetration of a conductor, i.e.,

L )

a  \nfuoc _ﬂ 2

the distance through which the amplitude of a traveling wave decreases by a factor of 1/e.

EX7-4 The electric field intensity of a linearly polarized uniform plane wave propagating in the +z
direction in seawater (&, =72, u, =1,0 =4) is given by

&(z=0;¢) =x100cos(10’ 71) (V/m)atz=0.

a) Determine «, B, 1, up, A, 0.

b) Find the distance at which the amplitude of E is 1% of its value at z=0.
¢) Write the expressions for &(z;f) and H(z;1).
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7-4 GROUP VELOCITY

The phase velocity u, of a single-frequency plane wave is defined as the velocity of propagation of an

equiphase wavefront, which is given by u, = @/ L (m/s). In lossless media, =k = w./ue is a linear

-1/2

function of @, and thus u, = (ue) is a constant. However, in some cases (e.g., lossy media,

transmission lines, waveguides), the phase constant is not a linear function of @, therefore different
frequencies will propagate at different velocities. Since information-baring signals consist of a band of
frequencies, waves of the component frequencies will travel with different velocities, resulting in the
distortion of the signal wave shape, or the signal “distorts”. The phenomenon which the signal distortion is
caused by the dependence of the phase velocity on frequency is called dispersion, and such media are
classified as dispersive media.

In general, an information-bearing signal normally has a small spread of frequencies (information)
around a high carrier frequency, for example, an amplitude-modulation (AM) signal consists of sound
signal (0-20 kHz) and carrier wave (e.g., 535 kHz - 1605 kHz, bandwidth/station 10 kHz). Such a signal
comprises a “group” of frequencies and forms a wave packet. A group velocity is the velocity of
propagation of the wave-packet envelope (of a group of frequencies). Typically, it is the velocity of
information or power transmission.

Consider a wave packet that consists of two traveling waves having equal amplitude and slightly
different angular frequencies @, + Aw,®, —Aw;A@ << @, . The phase constants of two frequency
components are given by S, + AS, B, — Af , thus
E(z;t) = E cos[(w, + Aw)t — (B, + AB)z]+ E, cos[(w, —Aw)t — (B, —Ap)z]

=2E, cos(tAw — zApB) cos(wyt — B, 2) '

Since Aw << @, , the above expression represents a rapidly oscillating wave having an angular frequency

ay and an amplitude that varies slowly with an angular frequency Aw as shown in Fig. 6.

AT AT Al

h\% ALUUNALL
i i il

Figure 6: Sum of two time-harmonic traveling waves of equal amplitude and slightly different frequencies
atagiven t.

The phase velocity can be found from setting @t — 3,z = constant as follows:

dz _ @

l/lp

dt ﬂo
The velocity of the envelope (the group velocity) can be determined by setting the argument of the first
cosine factor to a constant, i.e., tA@ — zAf = constant:

4 _dz Ao _ 1
dr AB AB/Aw
Taking the limit as Aw — Oyields
1
u, =———— (m/s).
dpldw

When u, = u,, there is no dispersion, and there is no signal distortion.
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7-5 FLOW OF ELECTROMAGNETIC POWER AND POYNTING VECTOR
Consider E(z) =XE (z) =XE e “""* . Thus, &(z;t) = Re[E(z)e’” ] = XE,e™* cos(wt — fz) . Likewise,

QXE ~ E _ ; —if
:y 0 e O-'Zejﬁze J 77;77.

- 16,
” | . =lnp.le’™, and
c c

H(z) =

thus, %(z;¢) = Re[H(2)e’” 1= § lEO I e cos(awt — fz - 0,7) )

c

The Poynting vector is then given by
2

P =6xH =Re[E(z)e’” | xRe[H(z)e’” ] = i%ez‘” cos(wt — fz)cos(awt — fz—0,)

¢

. E .
= zrole **“[cos 6, +cosQart —2f5z—6,)]
1.
The time-average Poynting vector then becomes
1 R ) 2 1
P, (2)=—[ (zndt=2-""—e " cosf, (Wm’);T=""=—.
T % 217, | o f
o . E
In lossless media, since o = 0,17, > 7,6, = 0,0 >0, P, (2) = Z2—
n

In general, the time-average Poynting vector can be found from

P,(2)= % [/ 90t = % [ x50t = % [ (Re[Ee’™]x Re[He ™ T)di

— L (" Re[Ex H*}r = L Re[Ex H*
_?L e[E x = Re[ExHY|

(W/m?).

7-6 NORMAL INCIDENCE OF PLANE WAVES AT PLANE BOUNDARIES

Consider a uniform plane wave traveling from medium 1 to medium 2.
Assume that the propagation direction is perpendicular to the interface
between two media as shown in Fig. 7 and both media are lossless. Let

the incident wave be given by
A~ R —iBz Reﬂfr::ri
; k xE. ZxE, E e’ Y7, .
AR — - _o Lo T P!
E[(Z):XEi()e JﬂlZ,Hi(Z)_ i [ i _y i ,771_ e N
Th Th Th &
Since there is a discontinuity at z=0 plane, there are both reflected  iacidem

wave back to medium 1 and transmitted wave into medium 2, which
can be given by

l;er —-zxE E e’"

Er(Z):ﬁEr()ejﬂlz;Hr(Z): i r =5, ,
m Ui m
A i k xE, ixE , E, ™
Et(Z):XEIOe ]ﬂZZ;H,(Z): t i t:y 10 i, = &
m 7, 7, &
From the boundary condition Ax E, =fixE,, one obtains
Ey+E,,=E, 3
From the boundary condition ix H, =hxH, , one obtains
1 1
—(Ey—E, )=—E, “
| Up

Solving equations (3), (4) yields

wave

E. -
'g
-

H,

E
;"Jnu

B,

Medium 1
LI 11

¥

z=0

r

E
CH, Bar
z

Medium 2
ez, mzl

Figure 7: Normal Incidence

Transmitted
WREVE
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E,= 1= EyE, = 20; E,.
m,+1 T, +1m

The reflection coefficient and the transmission coefficient are given by
r= Eo_m-m. __E,_ 21,

3T = = , respectively.
E, mn,+n E, n,+n
Note that 1+ 1" = 7. The standing wave ratio (SWR) becomes
E 1+ .. . -1
S = LE | = | I(dlmensmnless); 1<S <o, T I= S— <1
lEl, 1-1T1 S+1

The total electric field intensity in medium 1 becomes

E (2)=E, +E =X(E e " +TE ") =RE e " (1+Te’*"*);H,(2) = gL (i i)
m

: ,~ bz
tE e

7,
EX 7-7 A uniform plane wave in a lossless medium with intrinsic impedance 7 is incident normally onto
another lossless medium with intrinsic impedance 77, through a plane boundary. Obtain the expressions for
the time-average power densities in both media and find the standing wave ratio in medium 1 if 27,=1,.

E,(2) =E,(z) =XE, ;e " H,(z) =H,(2) = §
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7-6.1 NORMAL INCIDENCE ON A GOOD CONDUCTOR

o
In good conductors, —>> 1, and in perfect electric conductors (PEC), o — . Therefore, if medium 2
[

is a PEC, then n, =,[—— —=—""—0. Hence, '=—1;7=0 . Note that the boundary condition
nxE, =0onPECyields E,, + E,, =0, which implies ' =—1.

Here, the electric and magnetic field intensities in medium 1 are given by

E,(z)=E,+E, =R(E e +TE, ") =RXE, (e " — /) = —%j2E,,sin B,z;

~E, ; ~E. ; . 2F.
Hl(Z) — y_z()(e JBiz _l_‘e]ﬂlz) — y_tO(e bz +e/ﬂ1z) — y—lOCOSﬂlz
™ m m
Therefore, it can be noticed that E, lags behind H; by /2 (-j factor). Instantaneous fields can be found to be

&,(z;t) = Re[E,(z)e’” ] = X Re[ j2E,, sin B,ze’” ] = X2E,, sin B,z Re[e " *e’" ]
=X2E,; sin S,z cos(at —%) =X2E, sin f,zsin ot

2Ei0 jotq _

. 2FE,
cos fze’™ 1=y —"2cos f3,z cos ot
| N

7-7 OBLIQUE INCIDENCE OF PLANE WAVES AT PLANE BOUNDARIES

Here, the more general case of a uniform plane wave that impinges on
a plane boundary obliquely is considered. Refer to Fig. 8, the z=0

plane is the interface between medium 1 (&,4;) and medium 2 (&,16). o
The plane containing the normal vector to the boundary surface and .
the wavenumber vector is called the plane of incidence, which is the

xz plane in this case. Three angles in the figure, 8, 6, 6 are called the

angle of incidence, the angle of reflection, and the angle of
transmission, respectively.

In Fig. 8, lines AO, O’A’ and O’B are the intersections of the / i
wavefronts of the incident, reflected and transmitted waves iy
respectively, with the plane of incidence. Since both incident and J“‘:!f:f:
reflected waves are in medium 1, they must propagate with the same

X, (z;1) = Re[H, (z)e’” 1= § Re[

Refracted
wave

S Medium | |  Medium 2
phase velocity, thus the distances OA'and AO'must be equal. Hence, R Lt
OA' = 00'sin 6. = AO'= 00'sin 6, or Figure 8: Oblique Incidence

49, = 9, : Snell’s law of reflection

In medium 2, the time it takes for the transmitted wave to travel from O to B equals the time for the incident
wave to travel from A to O’. Thus,

OB _AO' _ 0B _ 00'sing, u,,
u, AO 00'sing, u

, from which one obtains

u

p2 rl

sind, u,, pfB n .
—L =22 =L =L\ Snell’s law of refraction
sin, wu, B, n,

n in the above equation is called the index of refraction, which is the ratio of the speed of light in free space
to that in the medium, i.e., n = c/u,. If 11, = 15, then
10
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S ARS8 (o
sid w7 V& V4

%

Alternative derivation of Snell's laws using Fermat's principle

In optics, Fermat's principle or the principle of least time is the principle that the path taken between two
points by a ray of light is the path that can be traversed in the least time. This can be used to derive Snell's
laws as follows:

Law of reflection Consider the figure on the right, then the time 4

required for the light to travel between points A and B is given by

VX . =% +h?
c c '
Taking the derivative with respect to x and setting it to 0 yields

X f—x

Jeiht - tn

=0,ie., sinf, =sind,.

Law of refraction Likewise, from the figure on the right, the time

required for the light to travel between points A and B is given by

t:\/x2+h12 +\/(€—x)2+h22 |

c/n, c/n,

/]

Taking the derivative with respect to x and setting it to 0 yields .

9 -

nx n,({ —x . . e

L =— 1)) ==0.1ie. nsin6, =n,sind,.
P +h J=x+h

7-7.1 TOTAL REFLECTION

When & > & (wave in medium 1 is incident on a less dense medium 2) x

72, at which the refracted wave will glaze along the interface. The angle o R Sirface ¢
WAYE

Snell’s law of refraction dictates that € > @. Thus, it is possible that &, = ' 1

of incidence @, at which the total reflection occurs is called the critical wawe
angle. It can be found by setting 6 = 772, thus,

sin & 1 £ & n
t - P P
- =— = [ e 96=Sln1 22 —sin'| % (u, = 1y)
sin@, sind, &, g n,
Incidemt f’.’,._,
: WEvE

Fig. 9 shows this situation. When & > 4,, M'-'t'fil“";ua

: e . =0 B
cosf, =4/1-sin’ @, =+j |~Lsin’ 6, —1 which becomes imaginary.
& Figure 9: Plane wave incident

Here, the wavenumber vector in medium 2, k, = £, (Xsiné, +Zcos6,) at critical angle, & > &.

ik
Therefore, e " becomes

ik _i ing 0 —az -] ,8 .2 ,8 .

e’ T —e JBs (xsin6,+zcos6,) —e azZe ]ﬁzxx;az =182 —ISIH 01 _l;ﬂzx zﬂz —ISIIlei,
& &
2 2

11
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which means the wave will decay very rapidly away from the interface. In other words, the wave is tightly
bound to the interface and is thus called the surface wave.

EX 7-9 The permittivity of water at optical frequencies is 1.75&. It is found that an isotropic light source at
a distance d under water yields an illuminated circular area of a radius 5 (m). Determine d.

Air '\\\ |
p \ 6 3 (m%
/ /> \/\/
.'/ ™, b
e J N ./)/ N :
B Ve ~\ \ \ ™~
- / , 3
Water Liglht Source

NS
\\ﬁ\ d U /\(
-~ ‘rb/ e \k,

Figure10: An underwater light source in example 7-9.

Ex Optical fibers use the total reflection to keep the light inside

fa ,
the core as shown in Fig. 11. The numerical aperture (NA) of [ | Fmwimer Apssiciysbrmsdancapeec
f [ 1 claoang A Qlass layer 1o kKesp e cols dean

an optical fiber is the number indicating the size of the cone | Iy ~,| |
1l o ] A nlass layer & transmit e light
which can be used to bring in the light (Fig. 12). Let the index i — -

of refraction of core and cladding be n,, n,, respectively, find /;'
NA .

Figure 12: Acceptance angle = sin”'NA

7-7.3 PERPENDICULAR POLARIZATION

Refer to Fig. 13, the xz-plane is the plane of incidence here and the B
propagation direction is given by K ,=Xsind, +zcosd, . The
electric and magnetic field intensities become

_ 2 —jpi(xsing+zcosb;) ,
E,(x,2) =yE,;e ™ ;

—jp (xsin@,+zcosb;) *

H,(x,z) = &(—f(cos 6, +17sinb,)e wave 5| e
In lossless media, f; = k;. The reflected and transmitted waves can — X o e A

be written as neiden }
R . . wave of

—JjB(xsin@,—zcosb,),
2

k, =xsin8 —zcosO;E (x,z)=YE, e

JjBy (xsin @, —zcos 0,) Medium | Medium 2

H, (x,7)=—" Lo (XcosO, +17sin @ )e Mmoot (epr ) i (€. f12)
m

Figure 13 Perpendicular polarization

12
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~ A . A A —j sin 6,+z cos 6,
kt = Xsn]@f +Zcosgt;Et(x’ 7) = yEtOe P (xsin 6,+zcos ,);

E N .. PP -
H, (x,7) = 2 (-Xcos @ +2sin §)e /0 drzeosty
m,

Applying the boundary conditions X E, =nxE,and i xH, =0 xH, yields,

IV | i o E e
e el —(E, cos@e N —E cos@e Py = =0 cos e Py x
771 Up)

— jfxsin 6 — e—jﬂlxsin [ — efjﬂzxsinﬁ, or

— jPxsin 6; —jPixsing, __
E,e +E,e =E,
In order for the above conditions are satisfied everywhere, e

Bxsing, = Bxsinf. = B,xsinb, ,

which is called the phase-matching conditions. Hence, 8, = 6 ;sin @, /sin 0, = S,/ 5, = n,/ n, (the Snell’s

E
(E—E,)=—"cos0,

laws given above). Thus, the boundary conditions become E, +E  =E,; cos 6
771 m,

t0°

Solving for E, and E,, the reflection and transmission coefficients can be found to be

FL:Ero:7720059[—77100565;6_&: 217, cos 6, .

E, mn,cos@ +m,cosb, E, n,cos0 +n,cosb,

Note that the case where 8, =0 — 8, =6, =0 reduces to the normal incidence in 7-6. Furthermore, the
relationship between the reflection and transmission coefficients is the same as that of the normal incidence,

ie., 1+I', =7, . When the medium 2 is PEC, 17, =0, thus I', =-1(E,, =-E,));7, =0(E,, =0).

EX 7-12 The instantaneous expression for the electric field of a uniform plane wave in air is
&, (x,z;t) =y10cos(wt +3x—4z) (V/m). This wave is incident on a PEC boundary at z = 0.

a) Find 3, o, 6.

b) Find E _(x,z)

¢) Find &, (x, z;t)

13



Uniform Plane Wave note

7-7.4 PARALLEL POLARIZATION

Let the xz-plane be the plane of incidence, and the x4
propagation direction k , =Xsin @, + Z cos 6, as shown in Fig. : L
14. The electric and magnetic field intensities become

N A e -J sin 6; N2
E,(x,2) = E,,(Xcos 8, — 2sin @,)e /1 i drecostn,

Transmived |
wave

JE 0 _—JjB(xsin6;+zcos ;)
Hi(_x’ Z) — y i e JP (xsm zZcos

1
The reflected and transmitted waves then become

WaEWE
k, =Xsin6 —7cosd; Medium 1 ] e 2
ey gd (e3, w2k
A A e -] sin 8,—z cos 6, e
E,(x,2) = E, (Xcos@, +Zsin . )e //rsn ozt i
H (x,2)=-% E, g iBilxsinb,—zcos6,) Figure 14: Parallel polarization
,
m
A A N A —jB, (xsind,+zcos, « Ey ipasingrzcost
k, = Xsin 9; +zc059t;E,(x,z) — EtO(XCOSGt —ZSIHQ)e P, (xsin6,+zcos I);Ht(x’z) — y_ZOe JB> (xsin6;+zcos6,)
m,

Applying the boundary conditions NXE, =hxE,, nxH, =fxH, and both Snell’s laws (i.e., Phase-

matching conditions) yield

1 E
(E, +E,)cos0, =E, cos;—(E, —E,)=—2.
1 m,
Solving for E,y and E,, then the reflection and transmission coefficients can be found to be
o E, n,co86, —n, cosb, . E, 2n, cos 0,
"= = by = = .
E, n,cosf +n, coso, E, mn,cosf +mn, cosb,
Note that if 8, =0 — 6, =0, =0, the results given I sl
1 T T T
above reduce to those found for the normal Incidence — | 4
in 7-6. Furthermore, the reflection coefficient is i | Ir, //“ﬂ“’
related to the transmission coefficient as o8r / i
cos® 07f VAT
1+ ]"” =7, —_— ele, =16 / b
coso, — o S
o e,/e, =9 / iy
which is different from the perpendicular - T S
polarization case except when 6, = 0 (normal N Odrefe =4 S / o 1
incidence). If medium 2 is a PEC, then 77, =0 and all SN =N A i
02—82/81 =2 //{\ R S J
l—1|| =_1(Er0 =_Ei0);T|| =0(E,0 =0) ‘cﬁ“‘/f*~\\;\\\ \‘\\\ \\/’///
01F T ~ \ / g
Fig. 15 shows a comparison between reflection T U
coefficients for both polarizations. As can be seen, % 0 = w 94‘0[d 55] e 0w w
. . . . . [aegree
those for perpendicular polarization are higher except 11969
the case of normal incidence. Figure 15: Reflection coefficients for both polarizations.

7-7.5 BREWSTER ANGLE OF NO REFLECTION (TOTAL TRANSMISSION)

Brewster angle is the incident angle at which the total transmission (I'=0) occurs. In the case of

perpendicular polarization,
cos@,  —mn,cosb,
l"l:O:n2 5.1~ Th O — 1,086, | =1,c0s6,
n,cos,  +mn coso, ’

14



Uniform Plane Wave note

Since sin6, /sin@, |, = B,/ f3,,

2 2
sin® @, | = (&] sin’ @, = 2% (1 _cos? 0)= @(1—(&] cos’ 6, ) = £6% (1 _ L85 (1 _gin? 0,.))
B HiE Hé m H& Hé&,

2
&, (1 _ M8 J HE, (!12] 1— &y
_ Hé& ey ) _ & Ay _ Hyé,

ssin® @, | = 5 5 >
H H )

Therefore, if 1= 4 total transmission will not occur.

In the case of parallel polarization,

cos@, —n,cosd
[=0= T2 7 L —> 17,086, =1}, c08 6,
1,086, +1,cos by, ’

2 2
sin 0, = (&J sin® 0, = 2222 (1-cos? ) = 2221 —(ij cos® ) =252 (1 - 252 (1 —sin% 9,,))
B Hi& Hi& ue Hié& &

2
&, [1 _H& ] HéE, [‘92] 1— &
- sin2 0,, = Hié& luigl _ Hié& ‘912 ,U1<922
& & &

e (1 = 1)

ssindy, =(-¢/¢&,)
stanby, = (/&) ""* =\/e,/e OR O, =tan™' &,/ & =tan"'(n,/n,) (1, = 1)

EX 7-13 The dielectric constant of pure water is 80. (a) Determine the Brewster angle for parallel
polarization, &g, and the corresponding angle of transmission. (b) A plane wave with perpendicular
polarization is incident from air on water surface at & =6 Find the reflection and transmission

coefficients.

0y, =sin"'(1-¢,/&,)""* =sin”'(1-1/¢,)""* =81.0°

sin@, = Bysin6,, /B, = (U Je )A/\1+1/e,)=1//I+5, =1//81 - 6, = 6.38°

r - 1,080y, —1,c086,  40.1c0s81°—377c0s6.38°
n,cosy, +m,co86, 40.1cos81°+377cos6.38°

=-0.967;7, =1+I"| =0.033
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