Vector Analysis

VECTOR ANALYSIS
2-1 OVERVIEW

In electromagnetic model, some of the quantities are scalars (e.g., charge, current, power),
while some others are vectors (e.g., electric and magnetic field intensities). Both scalars and
vectors can be functions of both time and position. A scalar is a quantity that has only
magnitude, while a vector is a quantity that has both magnitude and direction. In this chapter,
the following topics will be discussed:

1. Vector algebra—addition, subtraction, and multiplication of vectors

2. Orthogonal coordinate systems—Cartesian, cylindrical, spherical coordinates

3. Vector calculus—differentiation and integration of vectors; gradient, divergence, and

curl operations

2-2 VECTOR ADDITION AND SUBTRACTION
A vector A can be written as A=2a,A; A =IAl; a, = A/|A| =A/A, where A denotes the

magnitude of A and a, is the unir vector specifying the direction of A. The addition of two

vectors, C=A+B, can be done by using the parallelogram rule or the head-to-tail rule as
shown below. Likewise, the subtraction, D=A-B, can be done in the same manner.
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Question If three vectors, A, B, and C, drawn in a head-to-tail fashion, form three sides of a
triangle, what are A+B+C and A+B-C?

2-3 VECTOR MULTIPLICATION

2-3.1 Scalar or Dot Product B

The scalar or dot product of two vectors, denoted by A*B (“A |

dot B”), is defined as the product of magnitudes of A,B and the 1' s
cosine of the angle between them, i.e.,  EARh, VA <2

A -B = ABcos#,,. The following identities hold: — A
Bcos 4p

A-B =B-A (commutative) ; A-(B+C) =A-B+ A -C (distributive)

EX 2-1 Use vectors to prove the law of cosines for a triangle
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2-3.2 Vector or Cross Product 4
The vector or cross product of two vectors, denoted by AxB ~——
(“A cross B”), is defined as the vector whose magnitude is
the area of the parallelogram formed by A,B and whose
direction follows the thumb of the right hand when rotating
from A to B (the right-hand rule), i.e., ap Oas | -

AxB=a ABsind,, . The following identities hold: A

B x A =—-A xB, which is due to the right-hand rule; Ax(B+C) =AxB+AxC.
EX 2-2 For given A, B, C, the following relationship holds
regarding the scalar triple product:
A-BxC)=B-(CxA)=C-(AxB),

since the product represents the volume of the cubic formed by

the three vectors as shown in the figure. Be careful about the
order of the sequence {A, B, C}, {B, C, A}, {C, A, B}.

Area=Bxc B
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2-4 ORTHOGONAL COORDINATE SYSTEMS

Although the laws of electromagnetism are invariant with coordinate system, solution of
practical problems requires that the relations derived from these laws be expressed in an
appropriate coordinate system.

Since an electromagnetic (and other physics) problem generally exists in a three-dimensional
space, where a point is specified by three coordinates, denoted by (u;, u,, u3). Recall that an
N-dimensional vector space requires N base vectors (linearly independent; typically all unit
vectors) to expand the space, a three-dimensional coordinate system consists of three base

vectors, U,,0,,0,. These base vectors, U,,0,,0,, are perpendicular to the coordinate
surfaces, denoted by u,=c,, u,=c,, us=cs, respectively, where cy, c,, c; are constants. When all

base vectors are perpendicular to each other, the coordinate system is said to be orthogonal.
Thus, for orthogonal coordinate systems, the following relationship holds:

A 1 =]
0,0, =
0 else

Here, only orthogonal coordinate systems are discussed.
2-4.1 Cartesian Coordinates

In this most familiar system, (u;, u,, u3) = (x, y, z) and the base vectors are X,¥,Z. The right-

hand rule gives XXy =Z;§ XxZ =X;Zx X = ¥ and so on. A vector A can be represented by

A=%XA + §'Ay +2A_ where A,, A, A, are x, y, z components of A, respectively. It follows that
A-B=(XA, +§7Ay +2A)-(XB, +§rBy +ZB)=XA B, +§7AyBy +ZA B,
AxB=(XA, +JA +2A )< (XB +¥B +1B)

Xy 2
=X(A,B.~AB)+§(AB ~AB)+i(AB ~AB)=|A, A A
B, B, B,

The differential length, d¢, and differential volume, dv, are given by
dl = Xdx + ydy + 2dz; dv = dxdydz .
EX 2-4 Given A=X5-y2+7,B=—X3+174, find A‘B, AxB and 0,3

2-4.2 Cylindrical Coordinates
In this system, (u, u,, u3) = (o, ¢, z) and the base vectors are

P, &),i . The right-hand rule gives ﬁx$: Zihx2i=p

z

(p1:P1,21)

A

Zxp=¢ and vice versa. A vector A can be represented by e

A=pA , + (TJA¢j + iAZ where A, Ay, A, are p, ¢, z components of

A, respectively. The differential length, df, and differential
volume, dv, are given by

dt = pdp + bpd+ 2dz; dv = pdpd fdz.
The relationships between (p, ¢) and (x, y) are given by P
x=pcos ¢;y=psin ¢. Also, f),(i)are related to X, ¥ by

f):ﬁc0s¢+§rsin¢;$=—f(sin¢+§7c0s¢.
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Thus, p-X = cosg;p-§ =sing;¢-K =—sing;¢-§ =cosgand it

follows that the cylindrical to Cartesian coordinate transformation .

is given by e
A | |cosg —sing O A, !
A |=|sing cosg O] A,
A, 0 0 1 A

EX 2-6 Given A =p3cos¢— &)2,0 +Z5 . (a) what is the field at P(4, 60°, 5)? (b) Express the
field A at P, Ap, in Cartesian coordinates (c) Express point P in Cartesian coordinates

2-4.2 Spherical Coordinates

In this system, (u, us, u3) = (r, 6, @) and the base vectors are f‘,é,&). \

The right-hand rule gives Fx0=¢; Oxd=F; pxF =0 and vice ‘ ks

versa. A vector A can be represented by A =TA + (AJA(9 + (i)Agj where N
0

A,, Ag, Ay are 1, 6, g components of A, respectively. The differential
length, d€, and differential volume, dv, are given by

dt =tdr+0rd0 + drsin Gdg ; dv = r’sin 6drd0d¢. =
The relationships between (r, 6, ¢ ) and (x, y, z) are given by

x =rsinf@cos ¢;y = rsin@sing; z = rcosé. Also, T,0, ¢ are related to

X,¥,Zby _

r =Xsinfcos¢@+ ysinfdsing+zcos0;
0 =Rcos @ cosg+§cosfsing—Zsin b, (i) =—-Xsing+ycosg %
Thus, F-X=sinfcosg;f-y=sin@sing;r-Z=cosd and vice
versa. It follows that the spherical to Cartesian coordinate \
transformation is given by

A sinfcos¢ cos@cosg —sing | A, = )

. . . \\\‘L 4
A, |=|sinfsing cosfsing cosg | A, |. / S psin 0 dgp
A, cos @ —siné 0 A¢

EX 2-8 Assuming that a cloud of electrons confined in a region between two spheres of radii
2 and 5 (cm) has a charge density of

-3x10°*
— cos’ @ (C/m), find the total charge contained in the region.
r

Summary

Coordinates Cartesian (x,y,z) | Cylindrical (p,¢,2) Spherical (r,6,¢)
Base vectors %,¥.2 p (i) % £.0 (i)
Differential length d€ | Rdx+§dy+2dz | pdp+ dpdd+idz | Fdr+0rd0+ rsin Gdg
Differential volume dv dxdydz pdpd@dz r’sin GdrdGd¢
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2-5 GRADIENT OF A SCALAR FIELD

In general, a scalar field can be given by V(#; uy, up, us), where (u,, u,, us) denotes the
coordinates of the location. Note that for a static field, V is not a function of .

The definition of Gradient is given by “The vector that represents both the magnitude and the
direction of the maximum space rate of a scalar”.

Consider Fig. 2-18,

1%
gradV=VV=q, —
dn
where V denotes the “del” operator.
Noticing that
d—v—d—vﬂ—d—vcosﬁ Fig.2-18 Concerni i
dl  dndl  dn oascalar,
av . . A
=d_a" -a,=VV-q,
n
dv. _dv . o S L .
and E < a’_ , since the direction of gradient is the direction of the maximum space rate of
n
a scalar. Thus,
dv=VV.-adl=VV-dl (1)

Now, considering the total differential dV from the point P, to the point P; along the direction
of d€ in the Cartesian coordinate system, i.e., (u1, Us, u3) = (x,¥,z) and (d€,,db,,dts) = (dx,dy,dz),
one obtains
oV oV .oV . N A oV .oV oV
dV=|X—+y—+72— -(de+ydy+zdz): X—+y—+72— |-dl(2)
ox oy 0z 0x oy 0z
Comparing (1) and (2) yields

VvV :ﬁa_v+§za_v+ia_vz )’224_924_22 \%
0x oy 0z ox oy 0z
Operator V is called “nabla”. In the Cartesian coordinate system, it is given by
~0 ,0 .0
V==X—+y—+2—,
ox "~ o0y 0z

and one reads VV as “del V”.
Example 2-9(a) The Electrostatic field intensity E is given by E = —-VV . Determine E at the

point (1,1,0) if V = V,e™* sin%.

2-6 DIVERGENCE OF A VECTOR FIELD
It is convenient to represent field variations graphically by directed field lines, which are
called flux lines or streamlines. The magnitude of the field at a point is depicted by the
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density of the lines in the vicinity of the point, or in other words, it is measured by the number
of flux lines per unit surface normal to the vector.

The definition of divergence is given by

div A = the net outward flux of A per unit volume as the volume about the point tends to zero
which can be given in terms of the following equation:

§A ds
div A = lim

Av—0 Ay
Consider a differential volume of sides Ax, Ay, and Az centered about a point P in the field of
a vector A. In Cartesian coordinates,

z4 R
-P(xo, o, 2p)

f ’
Fig. 2-r19 A dlfferential volump in
Cartes}an coordir:iten. " ;

§SA -ds = [J.from + oack T right + et T top *+ [vottom }A -ds

face face face face face face
On the front face:
front A : dS :Afmnt : ASfmnt = Afmnt ’
face face face face
Using the Taylor series expansion to expand the term A,(xo+Ax/2,y0,20) yields:

Ax Ax 0A, .
A (x,+ - Vor20) = A, (X4, ¥0,20) +— + higher - order terms

A Ax
X(AyAz) =A (x, + 7 s Yo» Z0)AYAZ

2 Ox

where higher-order terms (H.O.T.) contain the factor (Ax/2)2, (Ax/2)3 and so on.
Similarly, on the back face

A Ax
jbaCkA ds =A, ASp = Ay '(_ XAyAZ) =-A, (X _7’ Yo»Z0)AYAZ

(X0,Y0+20)

face face face Jace
A
:—Ax()co,yo,zo)Jrga : +H.O.T.
2 ox (x0:Y0-20)
Thus,
i dA,

J.fmm‘ +J‘back:|A.dS:( a A'XAyAZ
L face face (X0:¥0:20)
Following the same procedure, one obtains
I 0A,

'[right + J‘left A-ds= A.XAyAZ
L face face 8}7 (X0,Y0,20)

Ifop J-hottom :|A ds = [aAZ + HOT) A'XAyAZ
L face face aZ (X0+Y0+20)

Hence,
OA,
§A ds=| A A | OA, AxAyAz + H.O.T.in Ax, Ay, Az
S ox 0Oy 0z I
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Since Av=AxAyAz, taking the limit as Av approaches 0 yields
0A, OA| O0A,
+—+ :
ox Oy 0z
VA read “del dot A”.
If V-A=0, A is called a solenoidal (divergenceless, divergence-free) field.

2-7 DIVERGENCE THEOREM

Since divergence of a vector field is defined as the net outward flux per unit volume, one can
expect that the volume integral of the divergence of a vector field equals the total outward
flux of the vector through the surface that bounds the volume, i.e.,

JV (V A)dv = iﬁSA -ds|: Divergence Theorem

divA=V-A=

Fig. 2-20 Subdivid:.; volume
for proof of divergence thearem.

Consider a very small differential volume element Av; bounded by a surface s;, the definition
of divergence gives directly

(V-A) Ay, =§S§«-ds

Now, subdividing the entire volume V into N small differential volumes, and combining all
differential volumes yields

N N
};@{;W A, A} - M{%ﬁé‘ | ‘“} @
The left hand side of (3) is, by definition, the volume integral of V-A, i.e.,
N

Jim ;(V-A)J.Avj}zj.V(V-A)dv.
Whﬂei the right hand side of (3) is equal to

lim iﬁA-ds}ﬁA.ds,

Av/-—>0

since the contributions from the internal surfaces of adjacent elements will cancel each other,
resulting in the net contribution of the right side of (3) equal to the contributions of the
external surface S bounding the volume V.

Example 2-12 Given A =Xx’ + yxy +2Zyz, 4 '
verify the divergence theorem over a cube

. . LF
one unit on each side.

Fig. 2-21 Aunit cube
|Exampie 2- 41
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2-8 CURL OF A VECTOR FIELD

A net outward flux of a vector A through a surface bounding a volume indicates the presence
of a source; this source is called a flow source, and Div A is a measure of the strength of the
flow source.

The other kind of source, called vortex source, causes a circulation of a vector field around it.
The net circulation (or simply circulation) of a vector field around a closed path is defined as

Circulation of A around contour C = §CA -de

Example 2-14 Given a vector field F = Xxy —y2x, find
its circulation around the path OABO in the figure.

Curl of a vector field is the measure of the strength of a vortex source, which is given by
curl A =VxA = 1imi[::un§A-deL
As—0 Ag C ax
or a vector whose magnitude is the maximum net circulation of A per unit area as the area
tends to zero and whose direction is the normal direction of the area when the area is
oriented to make the net circulation maximum.
In the figure on the right
N . 1
(VxA), =4a,-(VxA)= hm—UA-de}
As—0 Asu C,
Next, determine the three components of
VxA in Cartesian coordinates. First, in order
to find (VxA)y in the figure below, let u->x,

AS,=AyAz and C denote the paths 1,2,3,4
indicated in the figure.

Fig. 2-23 Relation between a,
and d¢ in defining curi.
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s em e

~L . Fig.2-24 Determining (V x A),.
. 1
(VXA)X =lim——1/| §;pos A-dl
2520 AyAz | %1234
Since in Cartesian coordinates A = XA, +JA +2A_,
Side 1: d€ = ZAz 5 A- db=A(xo, yo+AY/2, 20) Az

A Ay 0A
Az(xo,y0+—y,z0j=Az(xo,yo,z0)+—y 2 +H.O.T.
2 2 a (Xo»yo’zo)
Thus,
Ay 0A
A-dl = zﬁlz()co,yo,zo)wt—ya = +H.O.T.}Az
side 1 2 ay
(x()s)’olo)
Side 3: dl = —ZAz 3 A- dl=-A,(xy, yo-Ay/2, Z¢) Az
A Ay 0A
A, xo,yo——y,zo =Az(x0,y0,z0)——y—z +H.O.T.
2 2
(X(]»)’o»Zo)
Thus,
A-dl=— Az(xo,yo,zo)—ﬂ% +H.O.T. Az
side 3 ’ 2 ay (XO’VO,ZO)
and
fiaer A -de = oA, +H.O.T.{AyAz
side3 ay (Xo~y0s20)
Using the same approach yields
oA,
.|;ide2+A -dl = — +H.O.T. ;AyAz
side 4 07
(xo,yo,zo)
O0A
Hence, (V X A)X = % ——
dy 0z

(VxA)y, (VxA), can be found using the same procedure. It follows that curl in Cartesian
coordinates can be given by,

X vy 1z
vxa=ll 9 9
ox 0Oy 0z
A, A A

If VxA =0, A is called an irrotational (conservative or curl-free) field.
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2-9 STOKES’ THEOREM

By definition of curl, one obtains

(VxA),-(as;)=A-ae

Subdividing the entire surface into N small
differential surfaces and summing all
contributions yields

N N
Jim 2V xA),-{as))= fim 5 A -de
The left side is equals to

N
Alvljr—r)lO;(v X A)j -(Asj): L (VxA)-ds

while the right side equals to
N

lim > A -de=§A-de

As; >0 =

Hence, Stokes’ theorem can be given as follows:
[[(VxA)ds=§A-at

which means
the surface integral of the curl of a vector field over an open surface is equal to the closed
line integral of the vector along the contour bounding the surface

When the surface is closed, § (VxA)-ds=0.
S

Example 2-16 Verify Stokes’ theorem for the vector field in Example 2-14 over a quarter-
circular disk.

Green's Theorem Let C be a positively oriented, piecewise smooth, simple closed curve in
the plane IR2, and let D be the region bounded by C. If L and M are functions of (x, y) defined
on an open region containing D and have continuous partial derivatives there, then

oM  OL
J-D( Fy g}dxdy = f>c (Ldx + Mdy )

Proof via Stokes' theorem Let F = XL(x, y)+yYM (x,y), and D is a region on xy-plane, then
from Stokes' theorem,

IDVXF-ds=ID£a;;I —Z—I;]dxdy = §F -dt = § (Ldx + Mdy )-

Note that Green's theorem is a special case of the Stokes' theorem, when applied to a region in
the xy-plane.
2-10 TWO NULL IDENTITIES

1. Identity I: Vx(VV)=0
From Stokes’ theorem

[[[Vx(V)]-ds=§ (VVv)-de

Fig. 2~25 Subdivided area for
proof of Stokes's theorem.
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However, since dV =VV -dt, iﬁC(VV)- deé = iﬁch = 0. Therefore, the surface integral of

V x (VV) over any surface is zero. It follows that the integrand itself must therefore vanish,
thus identity I is true.

A converse statement of Identity I can be made as follows: If a vector field is curl-free, then it
can be expressed as the gradient of a scalar field. For example,

If VXE =0, E can be given by E=—-VV , where Vis a scalar field.

2. Identity Il: V-(VxA)=0

From divergence theorem,

[V-VxA)dv=§ (VxA)-ds=] (VxA)ads+[ (VxA)ads=§A-dl+{A-d1=0

Since this must hold for any volume, the identity II must be true.
It follows that since V - (V X A) =0, i;s (V X A)- ds = Owhere S is a closed surface,

as mentioned in 2-9.

Thus, if a vector field is
divergenceless, then it can be
expressed as the curl of another
vector field. For example,

If V-B =0 then B can be

expressed asB=V x A .

Fig. 2-26  An arbitraty volume ¥
enclosed by surtace S.

2-11 FIELD CLASSIFICATION AND HELMHOLTZ’S THEOREM
In general, vector fields can be classified as

1. Solenoidal and irrotational if V-F =0 and VxF =0

2. Solenoidal but not irrotational if V-F =0 and VxF # 0

3. Irrotational but not solenoidal if V-F#0and VxF =0

4. Neither irrotational nor solenoidal if V-F =0 and VxF # 0

The most general vector field has both a nonzero divergence and a nonzero curl, and can be
considered as the sum of a solenoidal field and an irrotational field.

Helmholtz’s Theorem: A vector field is determined if both its divergence and its curl are
specified everywhere.

Therefore, a vector field can generally be expressed as

F=F +F,

where F; is a irrotational (conservative) field, and F, is a solenoidal field. One can observe
that

V- F=V.F, +V-F, =V.F, = g = conservative (irrotational) field component

VxF =VxF, +VxF =VxF =G = solenoidal field component

Thus, both divergence and curl have to be specified. In other words, if both flow and vortex
sources are specified, the vector field will be determined.

Since F; is irrotational, it can be expressed as F. = —VV . Likewise, since F is solenoidal, it
can be expressed as F, =V x A . Hence,

F=F +F =-VV+VxA

In electromagnetic, V, A are called scalar potential, vector potential, respectively.

Example Given F =X(3y —c¢,2) +¥(c,x —22) —Z(c;y + 2)

(a) Determine the constants c, ¢,, ¢z if F is irrotational.
(b) Determine the scalar potential V whose negative gradient equals F.
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