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VECTOR ANALYSIS 

2-1 OVERVIEW 

In electromagnetic model, some of the quantities are scalars (e.g., charge, current, power), 

while some others are vectors (e.g., electric and magnetic field intensities). Both scalars and 

vectors can be functions of both time and position. A scalar is a quantity that has only  

magnitude, while a vector is a quantity that has both magnitude and direction. In this chapter, 

the following topics will be discussed: 

1. Vector algebraaddition, subtraction, and multiplication of vectors 

2. Orthogonal coordinate systemsCartesian, cylindrical, spherical coordinates 

3. Vector calculusdifferentiation and integration of vectors; gradient, divergence, and 

curl operations 

2-2 VECTOR ADDITION AND SUBTRACTION 

A vector A can be written as AAaA ˆ= ; A = |A|; AA //ˆ AAAa == , where A denotes the 

magnitude of A and 
Aâ is the unit vector specifying the direction of A. The addition of two 

vectors, C=A+B, can be done by using the parallelogram rule or the head-to-tail rule as 

shown below. Likewise, the subtraction, D=A-B, can be done in the same manner. 

 
Question If three vectors, A, B, and C, drawn in a head-to-tail fashion, form three sides of a 

triangle, what are A+B+C and A+B-C? 

 

2-3 VECTOR MULTIPLICATION 
2-3.1 Scalar or Dot Product 

The scalar or dot product of two vectors, denoted by A·B (“A 

dot B”), is defined as the product of magnitudes of A,B and the 

cosine of the angle between them, i.e., 

ABAB θcos≡⋅BA . The following identities hold: 

 
ABBA ⋅=⋅ (commutative) ; CABACBA ⋅+⋅=+⋅ )( (distributive) 

EX 2-1 Use vectors to prove the law of cosines for a triangle 

 

 

2-3.2 Vector or Cross Product 

The vector or cross product of two vectors, denoted by A××××B 

(“A cross B”), is defined as the vector whose magnitude is 

the area of the parallelogram formed by A,B and whose 

direction follows the thumb of the right hand when rotating 

from A to B (the right-hand rule), i.e., 

ABn AB θsinâBA ≡× . The following identities hold:  

BAAB ×−=× , which is due to the right-hand rule; CABACBA ×+×=+× )( . 

EX 2-2 For given A, B, C, the following relationship holds 

regarding the scalar triple product: 

)()()( BACACBCBA ×⋅=×⋅=×⋅ , 

since the product represents the volume of the cubic formed by 

the three vectors as shown in the figure. Be careful about the 

order of the sequence {A, B, C}, {B, C, A}, {C, A, B}. 
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2-4 ORTHOGONAL COORDINATE SYSTEMS 

Although the laws of electromagnetism are invariant with coordinate system, solution of 

practical problems requires that the relations derived from these laws be expressed in an 

appropriate coordinate system. 

Since an electromagnetic (and other physics) problem generally exists in a three-dimensional 

space, where a point is specified by three coordinates, denoted by (u1, u2, u3). Recall that an 

N-dimensional vector space requires N base vectors (linearly independent; typically all unit 

vectors) to expand the space, a three-dimensional coordinate system consists of three base 

vectors, 321
ˆ,ˆ,ˆ uuu . These base vectors, 321

ˆ,ˆ,ˆ uuu , are perpendicular to the coordinate 

surfaces, denoted by u1=c1, u2=c2, u3=c3, respectively, where c1, c2, c3 are constants. When all 

base vectors are perpendicular to each other, the coordinate system is said to be orthogonal. 

Thus, for orthogonal coordinate systems, the following relationship holds: 



 =

=⋅
else

ji
ji

0

1
ˆˆ uu  

Here, only orthogonal coordinate systems are discussed. 

2-4.1 Cartesian Coordinates 

In this most familiar system, (u1, u2, u3) = (x, y, z) and the base vectors are zyx ˆ,ˆ,ˆ . The right-

hand rule gives yxzxzyzyx ˆˆˆ;ˆˆˆ;ˆˆˆ =×=×=× and so on. A vector A can be represented by 

zyx AAA zyxA ˆˆˆ ++= where Ax, Ay, Az are x, y, z components of A, respectively. It follows that 

zzyyxxzyxzyx BABABABBBAAA zyxzyxzyxBA ˆˆˆ)ˆˆˆ()ˆˆˆ( ++=++⋅++=⋅ , 

zyx

zyxxyyxzxxzyzzy

zyxzyx

BBB

AAABABABABABABA

BBBAAA

zyx

zyx

zyxzyxBA

ˆˆˆ

)(ˆ)(ˆ)(ˆ

)ˆˆˆ()ˆˆˆ(

=−+−+−=

++×++=×

 

The differential length, dl, and differential volume, dv, are given by 

dxdydzdvdzdydxd =++= ;ˆˆˆ zyxl . 

EX 2-4 Given 4ˆ3ˆ,ˆ2ˆ5ˆ zxBzyxA +−=+−= , find A·B, A××××B and θAB 

 

 

 

 

 

 

2-4.2 Cylindrical Coordinates  

In this system, (u1, u2, u3) = (ρ, φ, z) and the base vectors are 

zρ ˆ,ˆ,ˆ φφφφ . The right-hand rule gives zρ ˆˆˆ =×φφφφ ; ρz ˆˆˆ =×φφφφ  

φφφφ̂ˆˆ =×ρz  and vice versa. A vector A can be represented by 

zAAA zρA ˆˆˆ ++= φρ φφφφ where Aρ, Aφ, Az are ρ, φ, z components of 

A, respectively. The differential length, dl, and differential 

volume, dv, are given by 

dzddd zρ ˆˆˆ ++= φρρ φφφφl ; dv = ρdρdφdz. 

The relationships between (ρ, φ) and (x, y) are given by 

x = ρ cos φ ; y = ρ sin φ . Also, φφφφ̂,ρ̂ are related to yx ˆ,ˆ by 
 

 

φφφφ cosˆsinˆˆ;sinˆcosˆˆ yxyxρ +−=+= φφφφ . 
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Thus, φφφφ cosˆˆ;sinˆˆ;sinˆˆ;cosˆˆ =⋅−=⋅=⋅=⋅ yxyρxρ φφφφφφφφ and it 

follows that the cylindrical to Cartesian coordinate transformation 

is given by 































 −

=
















zz
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A
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φ

ρ

φφ
φφ

100

0cossin

0sincos

. 

 

EX 2-6 Given 5ˆ2ˆcos3ˆ zρA +−= ρφ φφφφ . (a) what is the field at P(4, 60°, 5)? (b) Express the 

field A at P, AP, in Cartesian coordinates (c) Express point P in Cartesian coordinates 

 

 

 

 

 

2-4.2 Spherical Coordinates  

In this system, (u1, u2, u3) = (r, θ, φ) and the base vectors are φφφφ̂,ˆ,ˆ θr . 

The right-hand rule gives
 

φφφφ̂ˆˆ =×θr ; rθ ˆˆˆ =×φφφφ ; θr ˆˆˆ =×φφφφ  and vice 

versa. A vector A can be represented by φθ AAAr φφφφ̂ˆˆ ++= θrA where 

Ar, Aθ, Aφ are r, θ, φ components of A, respectively. The differential 

length, dl, and differential volume, dv, are given by 

φθθ drrddrd sinˆˆˆ φφφφ++= θrl ; dv = r
2
sin θdrdθdφ. 

The relationships between (r, θ, φ ) and (x, y, z) are given by  

x = rsinθ cos φ ; y = rsinθ sinφ ; z = rcosθ. Also, φφφφ̂,ˆ,ˆ θr  are related to 

zyx ˆ,ˆ,ˆ by 

;cosˆsinsinˆcossinˆˆ θφθφθ zyxr ++=  

;sinˆsincosˆcoscosˆˆ θφθφθ zyxθ −+=  φφ cosˆsinˆˆ yx +−=φφφφ  

Thus, θφθφθ cosˆˆ;sinsinˆˆ;cossinˆˆ =⋅=⋅=⋅ zryrxr and vice 

versa. It follows that the spherical to Cartesian coordinate 

transformation is given by 
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. 

 

 

EX 2-8 Assuming that a cloud of electrons confined in a region between two spheres of radii 

2 and 5 (cm) has a charge density of 

φ2

4

8

cos
103

r

−×−
(C/m

3
), find the total charge contained in the region. 

 

 

 

Summary 

Coordinates Cartesian (x,y,z) Cylindrical (ρ,φ,z) Spherical (r,θ,φ) 

Base vectors  zyx ˆ,ˆ,ˆ  zρ ˆ,ˆ,ˆ φφφφ  φφφφ̂,ˆ,ˆ θr  

Differential length dl dzdydx zyx ˆˆˆ ++  dzdd zρ ˆˆˆ ++ φρρ φφφφ  φθθ drrddr sinˆˆˆ φφφφ++θr  

Differential volume dv dxdydz ρdρdφdz r
2
sin θdrdθdφ 
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2-5 GRADIENT OF A SCALAR FIELD 

In general, a scalar field can be given by V(t; u1, u2, u3), where (u1, u2, u3) denotes the 

coordinates of the location.  Note that for a static field, V is not a function of t. 

The definition of Gradient is given by “The vector that represents both the magnitude and the 

direction of the maximum space rate of a scalar”. 

Consider Fig. 2-18, 

dn

dV
aVV n
ˆgrad ≡∇=  

where ∇ denotes the “del” operator. 

Noticing that 

lln aVaa
dn

dV

dn

dV

dl

dn

dn

dV

dl

dV

ˆˆˆ

cos

⋅∇=⋅=

== θ
 

 

and 
dn

dV

dl

dV
≤ , since the direction of gradient is the direction of the maximum space rate of 

a scalar. Thus, 

ldVdVdV l ⋅∇=⋅∇= lâ         (1) 

Now, considering the total differential dV from the point P1 to the point P3 along the direction 

of dl in the Cartesian coordinate system, i.e., (u1, u2, u3) = (x,y,z) and (dl1,dl2,dl3) = (dx,dy,dz), 

one obtains 

( ) ld
z

V

y

V

x

V
dzdydx

z

V

y

V

x

V
dV ⋅









∂
∂

+
∂
∂

+
∂
∂

=++⋅








∂
∂

+
∂
∂

+
∂
∂

= zyxzyxzyx ˆˆˆˆˆˆˆˆˆ  (2) 

Comparing (1) and (2) yields 

V
zyxz

V

y

V

x

V
V 









∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

=∇ zyxzyx ˆˆˆˆˆˆ  

Operator ∇ is called “nabla”. In the Cartesian coordinate system, it is given by 

zyx ∂
∂

+
∂
∂

+
∂
∂

≡∇ zyx ˆˆˆ , 

and one reads ∇V as “del V”. 

Example 2-9(a) The Electrostatic field intensity E is given by V−∇=E . Determine E at the 

point (1,1,0) if 
4

sin0

y
eVV

x π−= . 

 

 

 

 

 

 

 

2-6 DIVERGENCE OF A VECTOR FIELD 
It is convenient to represent field variations graphically by directed field lines, which are 

called flux lines or streamlines. The magnitude of the field at a point is depicted by the 
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density of the lines in the vicinity of the point, or in other words, it is measured by the number 

of flux lines per unit surface normal to the vector. 

The definition of divergence is given by 

div A ≡≡≡≡ the net outward flux of A per unit volume as the volume about the point tends to zero 

which can be given in terms of the following equation: 

v

d

∆

⋅
≡ ∫

→∆

S

0v

sA
A lim div  

Consider a differential volume of sides ∆x, ∆y, and ∆z centered about a point P in the field of 

a vector A. In Cartesian coordinates,  

 

sAsA
S

dd ⋅




 +++++=⋅ ∫ ∫ ∫ ∫ ∫ ∫∫
face
front

face
back

face
right

face
left

face
top

face
bottom  

On the front face: 

( ) zyzy
x

xAzyd x
face
front

face
front

face
front ∆∆

∆
+=∆∆⋅=∆⋅=⋅∫ ),,

2
(ˆ

000
face
front xAsAsA  

Using the Taylor series expansion to expand the term Ax(x0+∆x/2,y0,z0) yields: 

sorder term-higher
2

),,(),,
2

(
),,(

000000

000

+
∂

∂∆
+=

∆
+

zyx

x

xx
x

Ax
zyxAzy

x
xA  

where higher-order terms (H.O.T.) contain the factor (∆x/2)
2
, (∆x/2)

3
 and so on. 

Similarly, on the back face 

( )

H.O.T.
2

),,(

),,
2

(ˆ

),,(

000

000
face
back

000

+
∂
∂∆

+−=

∆∆
∆

−−=∆∆−⋅=∆⋅=⋅∫

zyx

x
x

x
face
back

face
back

face
back

x

Ax
zyxA

zyzy
x

xAzyd xAsAsA

 

Thus, 

zyx
x

A
d

zyx

x

face
back

face
front ∆∆∆







 +
∂
∂

=⋅







+ ∫∫

),,( 000

H.O.T.sA  

Following the same procedure, one obtains 

zyx
y

A
d

zyx

y

face
left

face
right ∆∆∆








+

∂

∂
=⋅








+ ∫∫

),,( 000

H.O.T.sA  
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Hence, 
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Since ∆v=∆x∆y∆z, taking the limit as ∆v approaches 0 yields 

z

A

y

A

x

A zyx

∂
∂

+
∂

∂
+

∂
∂

=⋅∇≡ AA div  

∇⋅A read “del dot A”.  

If ∇⋅A=0, A is called a solenoidal (divergenceless, divergence-free) field. 

2-7 DIVERGENCE THEOREM 

Since divergence of a vector field is defined as the net outward flux per unit volume, one can 

expect that the volume integral of the divergence of a vector field equals the total outward 

flux of the vector through the surface that bounds the volume, i.e., 

( ) ∫∫ ⋅=⋅∇
SV

ddv sAA  : Divergence Theorem 

 
Consider a very small differential volume element ∆vj bounded by a surface sj, the definition 

of divergence gives directly 

( ) ∫ ⋅=∆⋅∇
j

dv jj
S

sAA  

Now, subdividing the entire volume V into N small differential volumes, and combining all 

differential volumes yields 

( ) 







⋅=








∆⋅∇ ∑∫∑

=
→

=
→

N

j
∆v

N

j

jj
∆v jjj

dv
1

0
1

0
limlim

S
sAA       (3) 

The left hand side of (3) is, by definition, the volume integral of ∇⋅A, i.e., 

( ) ( )∫∑ ⋅∇=







∆⋅∇

=
→ V

N

j

jj
∆v

dvv
j

AA
1

0
lim . 

While the right hand side of (3) is equal to 

∫∑∫ ⋅=







⋅

=
→ S

N

j
∆v

dd
jj

sAsA
S

1
0

lim , 

since the contributions from the internal surfaces of adjacent elements will cancel each other, 

resulting in the net contribution of the right side of (3) equal to the contributions of the 

external surface S bounding the volume V. 

Example 2-12 Given yzxyx zyxA ˆˆˆ 2 ++= , 

verify the divergence theorem over a cube 

one unit on each side. 
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2-8 CURL OF A VECTOR FIELD 

A net outward flux of a vector A through a surface bounding a volume indicates the presence 

of a source; this source is called a flow source, and Div A is a measure of the strength of the 

flow source. 

The other kind of source, called vortex source, causes a circulation of a vector field around it. 

The net circulation (or simply circulation) of a vector field around a closed path is defined as 

Circulation of A around contour C ∫ ⋅≡
C

dlA  

Example 2-14 Given a vector field xxy 2ˆˆ yxF −= , find 

its circulation around the path OABO in the figure. 

 

 
 

 

 

 

 

Curl of a vector field is the measure of the strength of a vortex source, which is given by 

[ ]
max

ˆ
1

lim curl ∫ ⋅
∆

≡×∇≡
→∆ C

n
s

d
s

lAaAA
0

 

or a vector whose magnitude is the maximum net circulation of A per unit area as the area 

tends to zero and whose direction is the normal direction of the area when the area is 

oriented to make the net circulation maximum. 

In the figure on the right 

( ) ( ) 



 ⋅

∆
=×∇⋅=×∇ ∫→∆ uC

u
s

u d
s

lAAaA
0

u

1
limˆ  

Next, determine the three components of 

∇×A in Cartesian coordinates. First, in order 

to find (∇×A)x in the figure below, let u->x, 

∆Su=∆y∆z and C denote the paths 1,2,3,4 

indicated in the figure. 
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( ) 




 ⋅
∆∆

=×∇ ∫→∆ 4,3,2,1

1
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s
x d

zy
lAA

0
 

Since in Cartesian coordinates zyx AAA zyxA ˆˆˆ ++= , 

Side 1: zd ∆= ẑl ; A⋅ dl=Az(x0, y0+∆y/2, z0) ∆z 
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Side 3: zd ∆−= ẑl ; A⋅ dl=-Az(x0, y0-∆y/2, z0) ∆z 
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( )

zy
y

A
d

zyx

z

side

∆∆












+
∂
∂

=⋅∫ + H.O.T.

000 ,,
3
1side A l  

Using the same approach yields  

 

 

 
 

Hence, ( )
z

A

y

A yz
x ∂

∂
−

∂
∂

=×∇ A . 

(∇×A)y, (∇×A)z can be found using the same procedure. It follows that curl in Cartesian 

coordinates can be given by, 

zyx AAA

zyx ∂
∂

∂
∂

∂
∂

=×∇

zyx

A

ˆˆˆ

 

If  ∇×A = 0, A is called an irrotational (conservative or curl-free) field. 
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2-9 STOKES’ THEOREM 

By definition of curl, one obtains 

( ) ( ) ∫ ⋅=∆⋅×∇
jc

j dlAsA j  

Subdividing the entire surface into N small 

differential surfaces and summing all 

contributions yields 

( ) ( ) ∑∫∑
=

→∆
=

→∆
⋅=∆⋅×∇

N

j
cs

N

j

j
s jjj

d
1

0
1

0
limlim lAsA j  

 

The left side is equals to 

( ) ( ) ( ) sAsA j d
S

N

j

j
s j

⋅×∇=∆⋅×∇ ∫∑
=

→∆
1

0
lim  

while the right side equals to 

∫∑∫ ⋅=⋅
=

→∆ C

N

j
cs

dd
jj

ll AA
1

0
lim  

Hence, Stokes’ theorem can be given as follows: 

( ) ∫∫ ⋅=⋅×∇
CS

dd lAsA  

which means 

the surface integral of the curl of a vector field over an open surface is equal to the closed 

line integral of the vector along the contour bounding the surface 

When the surface is closed, ( ) 0=⋅×∇∫S dsA . 

Example 2-16 Verify Stokes’ theorem for the vector field in Example 2-14 over a quarter-

circular disk. 

 

 

 

 

 

 

 

 

Green's Theorem Let C be a positively oriented, piecewise smooth, simple closed curve in 

the plane 
2
, and let D be the region bounded by C. If L and M are functions of (x, y) defined 

on an open region containing D and have continuous partial derivatives there, then 

( )∫∫ +=







∂
∂

−
∂
∂

CD
MdyLdxdxdy

y

L

x

M
 

Proof via Stokes' theorem Let ),(ˆ),(ˆ yxMyxL yxF += , and D is a region on xy-plane, then 

from Stokes' theorem, 

( )∫∫∫∫ +=⋅=







∂
∂

−
∂
∂

=⋅×∇
CCDD

MdyLdxddxdy
y

L

x

M
d llllFsF . 

Note that Green's theorem is a special case of the Stokes' theorem, when applied to a region in 

the xy-plane. 

2-10 TWO NULL IDENTITIES 

1. Identity I: ( ) 0≡∇×∇ V  

From Stokes’ theorem 

( )[ ] ( )∫∫ ⋅∇=⋅∇×∇
CS

dVdV ls  
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However, since ldVdV ⋅∇= , ( ) 0==⋅∇ ∫∫ CC
dVdV l . Therefore, the surface integral of 

( )V∇×∇  over any surface is zero. It follows that the integrand itself must therefore vanish, 

thus identity I is true. 

A converse statement of Identity I can be made as follows: If a vector field is curl-free, then it 

can be expressed as the gradient of a scalar field. For example,  

If 0E =×∇ , E can be given by V−∇=E , where V is a scalar field. 

2. Identity II: ( ) 0≡×∇⋅∇ A  

From divergence theorem, 

( ) ( ) ( ) ( ) 0ˆˆ
2121

21 =⋅+⋅=⋅×∇+⋅×∇=⋅×∇=×∇⋅∇ ∫∫∫∫∫∫ CC
n

S
n

SSV
dddsdsddv lAlAaAaAsAA

Since this must hold for any volume, the identity II must be true. 

It follows that since ( ) 0=×∇⋅∇ A , ( ) 0=⋅×∇∫S dsA where S is a closed surface,  

as mentioned in 2-9. 

Thus, if a vector field is 

divergenceless, then it can be 

expressed as the curl of another 

vector field. For example,  

If 0=⋅∇ B  then B can be 

expressed as AB ×∇= . 

 
 

2-11 FIELD CLASSIFICATION AND HELMHOLTZ’S THEOREM 
In general, vector fields can be classified as 

1. Solenoidal and irrotational if 0FF =×∇=⋅∇ and0  

2. Solenoidal but not irrotational if 0FF ≠×∇=⋅∇ and0  

3. Irrotational but not solenoidal  if 0FF =×∇≠⋅∇ and0  

4. Neither irrotational nor solenoidal if 0FF ≠×∇≠⋅∇ and0  

The most general vector field has both a nonzero divergence and a nonzero curl, and can be 

considered as the sum of a solenoidal field and an irrotational field. 

Helmholtz’s Theorem: A vector field is determined if both its divergence and its curl are 

specified everywhere. 

Therefore, a vector field can generally be expressed as 

si FFF +=  

where Fi is a irrotational (conservative) field, and Fs is a solenoidal field. One can observe 

that 

⇒=⋅∇=⋅∇+⋅∇=⋅∇ gisi FFFF conservative (irrotational) field component 

⇒=×∇=×∇+×∇=×∇ GFFFF ssi solenoidal field component 

Thus, both divergence and curl have to be specified. In other words, if both flow and vortex 

sources are specified, the vector field will be determined. 

Since Fi is irrotational, it can be expressed as Vi −∇=F . Likewise, since Fs is solenoidal, it 

can be expressed as AF ×∇=s . Hence, 

AFFF ×∇+−∇=+= Vsi  

In electromagnetic, V, A are called scalar potential, vector potential, respectively. 

Example Given )(ˆ)2(ˆ)3(ˆ
321 zyczxczcy +−−+−= zyxF  

(a) Determine the constants c1, c2, c3 if F is irrotational. 

(b) Determine the scalar potential V whose negative gradient equals F. 


