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� Basic Concepts of Graph Theory
� Cut-set
� Incidence Matrix
� Circuit Matrix
� Cut-set Matrix



�Definition: In a connected graph G of n nodes 
(vertices), the subgraph T that satisfies the 
following properties is called a tree.

�T is connected

�T contains all the vertices of G

�T contains no circuit,

�T contains exactly n-1 number of edges.

In every connected graph G there exists at 
least one tree.

Definition of Graph



Tree & Co-tree

�Let G have p separated parts G1, G2, ..., Gp, 
that is G=G1∪G2∪...∪Gp, and let Ti be a tree 
in Gi, i=1,2,...,p, then,T=T1 ∪T2... ∪Tp is 
called a forest of G.

�DEFINITION: The complement of a tree is 
called a co-tree and the complement of a 
forest is called a co-forest. The edges of a 
tree or a forest are called branches and the 
edges of a co-tree or co-forest are called 
links (chords).



Tree & Co-tree Examples

9 possible trees and corresponding co-trees:

{ } { } { }

{ } { } { }

{ } { }

1 2 3 4 5 4 1 2 5 6 7 2 3 5 6

2 1 2 4 6 5 1 3 4 6 8 1 2 4 5

3 1 3 5 6 6

2 3 5 5 2 5 8

4 2 4 6

1 1 6 4 3 4 7 1 4

2 3 4

1

3 6

5

6

{ , , , } { , , , } { , , , }

{ , , , } { , , , } { , , , }

{ , , , } { , ,

,

, ,

,

,

,

,

}

, ,

T e e e e T e e e e T e e e e

T e e e e T

T

T e e T e e T e e

T e e T e

e e e e T e e e e

T e e e e

e

T e e e e

e T e e

e T e e

′ ′ ′= =

= = =

= = =

′ ′= =

′ ′ ′= = =

=

=

=

{ }
9 1 3 5

2

4

9 6

{ , , ,

,

}T e e

T

e

e e

e

′ =

=

v2

v1

v3

v4

v5

e1

e2

e3

e4

e5

e6



Rank & Nullity

� DEFINITION: Let G be a graph and let b
and l be respectively the number of 
branches and chords of G, then b and l are 
called respectively the rank and the nullity 
of the graph.

� THEOREM: Let G have n nodes, e edges 
and p connected parts, then its rank and 
nullity are given respectively by

b = n - p

and

l = e – n + p



Fundamental Circuit (f-circuit)

� DEFINITION: Let G be a connected graph 
and let T and T’ be tree and co-tree 
respectively, that is G=T∪T’. Let a link e’⊆T’ 
and its unique tree path (a path which is 
formed by the branches of T) define a circuit. 
This circuit is called the fundamental circuit
(f-circuit) of G. All such circuits defined by 
all the chords of T’ are called the 
fundamental circuits (f-circuits) of G. If G is 
not connected, then the f-circuits are defined 
with respect to a forest.



f-circuit Example
� Note that the number of f-circuits is given by the nullity of 

G and that, with respect to a chosen tree T of G, each f-
circuit contains one and only link.

Consider the following graph
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f-circuits:

cf1={e3,e1,e2}, 

cf2={e6,e8,e4,e5},

cf3={e7,e8,e4,e5}

Nullity of G

l=e-n+p=8-6+1=3

v6



Cut-Set
� DEFINITION: The cut-set of a graph G is the 

subgraph Gx of G consisting of the set of edges 
satisfying the following properties:

� The removal of Gx from G reduces the rank of G 
exactly by one.

� No proper subgraph of Gx has this property.

If G is connected, then the first property in the 
above definition can be replaced by the following 
phrase.

� The removal of Gx from G separates the given 
connected graph G into exactly two connected 
subgraphs. 



Cut-set example
Consider the following graph and the following set of edges

G1={e1,e2}

G2={e4,e6,e7}

G3={e2,e3,e4,e8}

G4={e2,e3,e6}
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Cut-set

is also a cut-set

is not a cut-set, because a subset of G4 is 
cut-set

is not a cut-set, because the removal of G3

from G results in three connected subgraphs



Fundamental cut-set (f-cutset)

� DEFINITION: Let G be a connected graph and let T 
be its tree. The branch et⊆T defines a unique cut-set 
(a cut-set which is formed by et and the links of G). 
This cut-set is called the fundamental cut-set (f-
cutset) of G. All such cut-sets defined by all the 
branches of T are called the fundamental cut-sets (f-
cutsets) of G. If G is not connected then the f-cut
sets are defined with respect to a forest.

� Note that the number of fundamental cut-sets is given 
by the rank of G and with respect to a chosen tree T of G, 
each fundamental cut-set contains one and only one 
branch.



f-cutset example
Consider the following graph with T={e1,e2,e4,e5,e8}

v1

v2

v3

v4

v5

e1

e2

e3

e4

e5

e6

e7e8

v6

f-cutsets:

xf1={e1,e3} xf2={e2,e3}

xf3={e4,e6,e7} xf4={e5,e6,e7}

xf5={e8,e6,e7}



Matrices of Directed Graphs
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• The edge e1 which has a direction from node v1 to node v2

simply indicates that any transmission from v1 to v2 along e1

is assumed to be positive.

• Any transmission from v2 to v1 along e1 is assumed to be 

negative.



Incidence Matrix
�DEFINITION: Let e and n represent respectively 
the number of edges and nodes of a graph G. The 
incidence matrix

having n rows and e columns with its elements
are defined as
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Incidence Matrix (2)
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Incident Matrix:

Property:

Any column of A
contains exactly two 
nonzero entries of 
opposite sign.
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Reduced Incidence Matrix
� DEFINITION: For a connected graph G, the matrix A, 

obtained by deleting any one of the rows of the 
incidence matrix Aa is called the reduced incidence

matrix.

� Note that since any column of Aa contains exactly two 
nonzero entries of opposite sign, one can uniquely 
determine the incident matrix when the reduced 
incident matrix is given.

� Note also that the rank of Aa is n-1.



Circuit Matrix
�In a graph G, let k be the number of circuits and let 
an arbitrary circuit orientation be assigned to each one 
of these circuits.

�DEFINITION: The circuit matrix 

for a graph G of e edges and k circuits is defined as
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Circuit Matrix
�Consider the following graph
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f-Circuit Matrix
�Let bi represent the row of B that corresponds to 
circuit ci. The circuits ci,...,cj are independent if the 
rows bi,... bj are independent.

�DEFINITION: The f-circuit matrix Bf of a graph G 
with respect to some tree T is defined as the circuit 
matrix consisting of the fundamental circuits of G only 
whose orientations are chosen in the same direction as 
that of defining links. 

�The fundamental circuit matrix Bf of a graph G with 
respect to some tree T can always be written as
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f-Circuit Matrix (2)
�Consider the following graph with T’ = {e1,e3,e5}
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Incidence & Circuit Matrices
�THEOREM: If the column orderings of the 

circuit and incident matrices are identical 
then
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Matrices of Oriented Graphs
�Consider the following graph
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Cut-set Matrix
�In a graph G let x be the number of cut-sets having 
arbitrary orientations. Then, we have the following 
definition. 

�DEFINITION: The cut-set matrix 

for a graph G of e edges and x cut-sets is defined as
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Cut-set Matrix (2)

�Consider the following graph and its seven possible 
cut-sets
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f-Cut-set Matrix
�DEFINITION: The f-cutset matrix Qf of a graph G 
with respect to some tree T is defined as the cut-set 
matrix consisting of the fundamental cut-set of G only 
whose orientations are chosen in the same direction as 
that of defining branches.

�The fundamental cut-set matrix Af of a graph G with 
respect to some tree T can always be written as

� Recall that b = n-1
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f-Cut-set Matrix (2)

�Consider the following graph with T = {e2,e4,e5}
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Cut-set & Circuit Matrices
�THEOREM: If the column orderings of the 

circuit and incident matrices are identical 
then

�Also
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Cut-set & Circuit Matrices

�Consider the following graph
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FUNDAMENTAL POSTULATES

�Now, Let G be a connected graph having e edges 
and let

be two vectors where xi and yi, i=1,...,e, 
correspond to the across and through variables 
associated with the edge i respectively.
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FUNDAMENTAL POSTULATES

�2. POSTULATE Let B be the circuit matrix of the 
graph G having e edges then we can write the 
following algebraic equation for the across variables 
of G (e.g., edge voltage)

�3. POSTULATE Let Q be the cut-set matrix of the 
graph G having e edges then we can write the 
following algebraic equation for the through 
variables of G (e.g., edge current)

KVL⇒= 0Bx

KCL⇒= 0Qy



Fundamental Circuit & Cut-set Equations
� Consider a graph G and a tree T in G. Let the vectors v

and i partitioned as

� Then

fundamental circuit equation fundamental cut-set equation
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Series & Parallel Edges

� Definition: Two edges ei and ek are said to be connected 
in series if they have exactly one common vertex of 
degree two.

� Definition: Two edges ei and ek are said to be connected 
in parallel if they are incident at the same pair of 
vertices vi and vk.
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ek
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General Procedure
1. Draw a graph and then identify a tree.

2. Place all control-voltage branches for voltage-
controlled dependent sources in the tree, if 
possible.

3. Place all control-current branches for 
current-controlled dependent sources in the 
cotree, if possible.

4. Find incidence, f-circuit, or f-cutset matrix.

5. Replace voltage, current sources with short, 
open circuits, respectively.

6. Formulate the matrix equation.
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