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� Introduction to Graph Theory
� Historical Problems
� Graph Theory and Networks
� Graph and its basic components
� Application to Circuit Analysis
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Introduction to graph theory

�Graph theory – study of graphs and their 
applications

�Graph – mathematical object consisting of a 
set of:
�V = nodes (vertices, points).

�E = edges (links, arcs) between pairs of nodes.

�Denoted by G = (V, E).

�Captures pairwise relationship between objects.

�Graph size parameters:  n = |V|, m = |E|.
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What Is a Graph?

� A graph G is a triple consisting of:

� A vertex set V(G )

� An edge set E(G )

� A relation between an edge and a pair of vertices
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Examples of Applications
� Graphs can be used to model many types of relations 

and processes in physical, biological, social and 
information systems.

� In computer science, can be used to represent 
networks of communication, data organization, 
computational devices, the flow of computation, etc.

� Chemistry, e.g., model of molecule (atom & bond)

� Physics, e.g., interactions of system components.

� Sociology, e.g., social network (friendship, 
acquaintance, work collaboration, etc.)

� Biology, e.g., animal migration, spread of disease.
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Graph Theory - History

Leonhard Euler's paper on “7 Bridges of 
Königsberg” , published in 1736. 

Here, vertices = islands; 

edges = bridges



The 7 Bridges of Königsburg

�Königsburg (now called Kalingrad) is a city 
on the Baltic Sea wedged between Poland 
and Lithuania.

�A river runs through the city which contains 
a small island.

�There are 7 bridges which connect the 
various land masses of the city.



The Problem

�The people of Königsburg made a sport during 
the 18th century of trying to cross each and 
every one of the 7 bridges exactly once.

�This was to be done in such a way that one 
would always end up where one began.



Euler and Graph Theory

�Euler’s solution to the Königsburg bridge 
problem was more than a trivial matter.

�He didn’t just solve the problem as stated; he 
made a major contribution to graph theory. 
Indeed, he essentially invented the subject.

�His contribution has many practical 
applications.



Some Vocabulary

�A graph is a set of vertices connected by 
edges.

�The valence (degree) of a vertex is the 
number of edges that meet there.

�An Euler Circuit is a path within a graph 
that covers each and every edge exactly once 
and returns to its starting point.



Euler’s Theorem 
�A connected graph has an Euler circuit if 

and only if every vertex has an even 
valence. 

�The Königsburg bridge problem translated 
into a graph in which all valences were odd. 
Thus there was no way to walk on each 
bridge precisely once.



Euler’s Theorem

Why is it true?
� Any vertex with odd valence must be either a starting 

point or an ending point.

� All points that are neither starting nor ending points 
must be left as often as they are entered.

Why is it important?
� There are many, many examples of circuits that one 

wishes to traverse such that every edge is covered and 
no edge is repeated.

� Routes for letter carriers, meter readers, and the like, 
share these characteristics.



Not all graphs have even valence on 

all vertices --- What then?

�One cannot expect that every street layout 
or route will translate into a graph with all 
vertices of even valence.

� In these cases, one can try to minimize the 
number of edges that are repeated.

�There is an algorithm to do this. It is called 
Eulerizing the graph. 



Eulerizing a Graph

� Select pairs of vertices in the graph that have odd valence.

� Do this in such a way that the vertices are as close together 
(have the fewest edges between them) as possible.

� Neighboring vertices would be the best choice, if possible.

� For each edge on the path that connects a pair of odd-
valenced vertices, generate a “phantom edge” duplicating 
that edge.

� Do this for each pair of odd-valenced vertices.

� In general, there will be more than one Eulerization of a 
graph. The fewer duplicated edges, the better.



Recall the City of Königsburg



Let us Eulerize Königsburg I 
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Eulerizing Königsburg II

�Here, we have selected pairs of odd-
valenced vertices, BD and AC.

�We have added a “phantom” edge between 
these pairs of vertices. These phantom edges 
are edges that are traversed twice.

�Now, with the addition of just two edges, the 
graph has all even-valenced vertices.



A Troublesome Question
�How do we know that we can always do this?

� In particular, how do we know that the odd-
valenced vertices will occur in pairs?

Theorem: The number of odd-valenced
vertices is even.
Proof Suppose that there are N edges, thus, 
there are 2N “ends” of edges. The sum of all the 
valences must be 2N. Therefore, it is not 
possible to have an odd number of odd-
valenced vertices. Hence, the odd-valence 
vertices occur in pairs.



Euler Circuits: In Summation

�A very simple and elegant idea has led to a 
wide variety of real-world applications.

�Nearly any process which involves routing 
(and there are many) can be made more 
efficient by these methods.

�Many millions of dollars can be saved in the 
process!!



Graph Theory - History

Cycles in Polyhedra

Thomas P. Kirkman William R. Hamilton

Hamiltonian cycles in Platonic graphs



Graph Theory - History

Gustav Kirchhoff

Trees in Electric Circuits



Graph Theory - History

Arthur Cayley James J. Sylvester      George Polya

Enumeration of Chemical Isomers –n.b. topological 
distance a.k.a chemical distance



Graph Theory - History

Francis Guthrie  Auguste DeMorgan

Four Colors of Maps



� The theorem asserts that 
four colors are enough to 
color any geographical 
map in such a way that 
no neighboring two 
countries are of the same 
color. 
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Graph Representation

� Representing a as a graph can provide a 
different point of view

� Representing a problem as a graph can 
make a problem much simpler

� More accurately, it can provide the 
appropriate tools for solving the problem



What makes a problem graph-like?

� There are two components to a graph

� Nodes and edges

� In graph-like problems, these components 
have natural correspondences to problem 
elements

� Entities are nodes and interactions between 
entities are edges

� Most complex systems are graph-like



Friendship Network



Scientific collaboration network



Business ties in US 
biotech-industry



Genetic interaction network 



Protein-Protein Interaction Networks



Transportation Networks



Internet



Ecological Networks



Graphs ↔ Networks

Graph

(Network)

Vertexes

(Nodes)

Edges

(Arcs)
Flow

Communications
Telephones exchanges, 
computers, satellites

Cables, fiber optics, 
microwave relays

Voice, video, 
packets

Circuits
Gates, registers, 
processors

Wires Current

Mechanical Joints Rods, beams, springs Heat, energy

Hydraulic
Reservoirs, pumping 
stations, lakes

Pipelines Fluid, oil

Financial Stocks, currency Transactions Money

Transportation
Airports, rail yards, 
street intersections

Highways, railbeds, 
airway routes

Freight, 
vehicles, 
passengers 



Graph Theory : Terminology
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Directed Graph (Digraph)
An edge e ∈ E of a directed graph is represented as 
an ordered pair (u,v), where u, v ∈ V. Here u is the 
initial vertex and v is the terminal vertex. Also 
assume here that u ≠ v

2

4

3
1

V = { 1, 2, 3, 4}, | V | = 4
E = {(1,2), (2,3), (2,4), (4,1), (4,2)}, | E |=5



Undirected Graph

2

4

3
1

V = { 1, 2, 3, 4}, | V | = 4
E = {(1,2), (2,3), (2,4), (4,1)}, | E |=4

An edge e ∈ E of an undirected graph is 
represented as an unordered pair (u,v)=(v,u),
where u, v ∈ V. Also assume that u ≠ v



Weighted Graph
A weighted graph is a graph for which each edge 
has an associated weight, usually given by a weight 
function w: E → R
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Adjacent, neighbor, incident
� Two vertices are adjacent and are neighbors if they 

are the endpoints of an edge

� Example:

� A and B are adjacent

� A and D are not adjacent

� The edge ei is said to be incident uponincident uponincident uponincident upon vj, vk if ei is an 

edge whose endpoints are (vj,vk), e.g., edge 1 is 

incident incident incident incident uponuponuponupon A,B.

� DegreeDegreeDegreeDegree of a vertex vk is the number of edges 

incident upon vk . It is denoted as d(vk). e.g., d(A) = 2

A B

C D

1

2

3

4 5



Complete Graphs

A

D

C

B

4 nodes and (4*3)/2 
edges

V nodes and V*(V-1)/2 
edges  

C

A

B

3 nodes and 3*2 edges

V nodes and V*(V-1) 
edges

A complete graph is an undirected/directed graph in 
which every pair of vertices is adjacent.  If (u, v ) is 
an edge in a graph G, we say that vertex v is adjacent
to vertex u.
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Complement

� Complement of Complement of Complement of Complement of G:  The complement G’ of a 

simple graph G :

� A simple graph

� V(G’) = V(G) 

� E(G’) = { uv | uv ∉E(G) }

G

u

v
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Loop, Multiple edges, Simple Graph
� Loop : An edge whose endpoints are equal

� Multiple edges : Edges have the same pair of 

endpoints

� Simple graph : A graph has no loops or multiple 

edges

loop

Multiple 

edges

loop
Multiple 

edges

It is not simple. It is a simple graph.
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Subgraphs
� A subgraphsubgraphsubgraphsubgraph of a graph G is a graph H such that:

� V(H) ⊆⊆⊆⊆ V(G) and E(H) ⊆⊆⊆⊆ E(G) and

� The assignment of endpoints to edges in H is the same 

as in G.

� Example:: H1, H2,  and H3 are subgraphs of G

c

d

a b
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a b
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H1
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c

de



45

Clique and Independent set

� A CliqueCliqueCliqueClique in a graph: a set of pairwise adjacent 
vertices (a complete subgraph)

� An independent setindependent setindependent setindependent set in a graph: a set of pairwise 
nonadjacent vertices

� Example:

� {x, y, u} is a clique in G

� {u, w} is an independent set
G

u

v

wx

y



Degree of a Vertex
Degree of a vertex in an undirected graph is the 
number of edges incident on it.  In a directed graph, 
the out degree of a vertex is the number of edges 
leaving it and the in degree is the number of edges 
entering it

2

4

31

2

4

3
1

The degree of vertex 
2 is 3 

The in degree of vertex 
2 is 2 and the in 
degree of vertex 4 is 1



Walks and Paths

⊆

3

2

3

4

1

1

V5V4

V3
V2

V1
V6

4

1

A walk is an alternating sequence of vertices and 
edges, e.g. (V2, e3, V3, e2, V6, e4, V5, e1, V3)

A cycle is a closed path (v1, v2,..., vL) where v1=vL with 
no other nodes repeated  and L>3, e.g. (V1, V2,V5, 
V4,V1)

A simple path is a walk with no repeated nodes, 
e.g. (V1, V4,V5, V2,V3)

A graph is called cyclic if it contains a cycle; 
otherwise it is called acyclic



Connected Graphs

A

D E F

B C

A B

C D

An undirected graph is 
connected if you can get from 
any node to any other by 
following a sequence of edges 
OR any two nodes are 
connected by a path

A directed graph is strongly 
connected if there is a directed 
path from any node to any other 
node

�A graph is sparse if | E | ≈ | V |

�A graph is dense if  | E | ≈ | V |2



Bipartite Graph
A bipartite graph
is an undirected graph
G = (V,E) in which V can 
be partitioned into 2 sets 
V1 and V2 such that ( 
u,v) ∈ E implies either
u ∈ V1 and v ∈ V2 
OR 
v ∈ V1  and u ∈ V2.

u1

u2

u3

u4

v1

v2

v3

V1 V2

An example of bipartite graph application to telecommunication problems can be found in, 
C.A. Pomalaza-Ráez, “A Note on Efficient SS/TDMA Assignment Algorithms,” IEEE 
Transactions on Communications, September 1988, pp. 1078-1082. 



Applications of Bipartite Graph
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�Stable marriage:  men = red, 
women = blue.

�Scheduling:  machines = red, jobs 
= blue.

�Metabolic networks: metabolites 
= blue, enzymes = red.
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Adjacency matrix

� Let G = (V, E), |V| = n and |E|=m

� The adjacency matrixadjacency matrixadjacency matrixadjacency matrix of G written A(G), is the n-
by-n matrix in which entry ai,j is the number of 

edges in G with endpoints {vi, vj}.

a

b

c

d

e

w

x

y z

w    x    y    z

0     1    1    0

1     0    2 0

1     2 0    1

0     0    1    0

w

x

y

z 
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Incidence Matrix (undirected)

� Let G = (V, E), |V| = n and |E|=m

� The incidence matrixincidence matrixincidence matrixincidence matrix M(G) is the n-by-m matrix in 

which entry mi,j is 1 if vi is an endpoint of ei and 

otherwise is 0. Note that for digraphs, the entry is 1 
for “outward” connection, and -1 for “inward”.

a

b

c

d

e

w

x

y
z

a    b    c    d    e

1    1    0    0    0

1 0    1    1 0

0    1    1    1    1

0    0    0    0    1

w

x

y

z 
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Isomorphism

� An isomorphismisomorphismisomorphismisomorphism from a simple graph G to a simple 

graph H is a bijection f:V(G)→V(H) such that uv
∈E(G) if and only if f(u)f(v) ∈ E(H)

� We say “G is isomorphic to is isomorphic to is isomorphic to is isomorphic to H”, written G ≅ H

HG

w

x z

y c d

ba

f1: w  x   y   z

c  b   d   a

f2:  w  x    y   z

a   d   b   c
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Directed Graph and Its edges
� A directed graphdirected graphdirected graphdirected graph or digraphdigraphdigraphdigraph G is a triple:

� A vertex setvertex setvertex setvertex set V(G), 

� An edge setedge setedge setedge set E(G), and 

� A function assigning each edge an ordered pair of 

vertices. 

� The first vertex of the ordered pair is the tailtailtailtail of the 
edge

� The second is the headheadheadhead

� Together, they are the endpointsendpointsendpointsendpoints. 

� An edge is said to be fromfromfromfrom its tail totototo its head. 

� The terms “head” and “tail” come from the arrows used 

to draw digraphs. 
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Directed Graph and its edges
� As with graphs, we 

� assign each vertex a point in the plane and 

� each edge a curve joining its endpoints. 

� When drawing a digraph, we give the curve a direction from the tail to 

the head.

� When a digraph models a relation, each ordered pair is the (head, 

tail) pair for at most one edge. 

� In this setting as with simple graphs, we ignore the technicality of 

a function assigning endpoints to edges and simply treat an edge 

as an ordered pair of vertices
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Loop and multiple edges in directed graph

� In a graph, a looplooplooploop is an edge whose endpoints are equal. 

� Multiple edgesMultiple edgesMultiple edgesMultiple edges are edges having the same ordered pair of 

endpoints. 

� A digraph is simplesimplesimplesimple if each ordered pair is the head and 

tail of the most one edge; one loop may be present at 

each vertex. 

� In the simple digraph, we write uv for an edge with tail u
and head v. 

� If there is an edge form u to v, then v is a successorsuccessorsuccessorsuccessor of 

u, and u is a predecessorpredecessorpredecessorpredecessor of v. 

� We write u→v for “there is an edge from u to v”.

Loop

Multiple edges
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Path and Cycle in Digraph

� A digraph is a path if it is a simple digraph whose 

vertices can be linearly ordered so that there is an 

edge with tail u and head v if and only if v
immediately follows u in the vertex ordering. 

� A cycle is defined similarly using an ordering of 

the vertices on the cycle.
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Adjacency Matrix and Incidence Matrix
of a Digraph

� In the adjacency matrixadjacency matrixadjacency matrixadjacency matrix A(G) of a digraph G, the entry 

in position i, j is the number of edges from vi to vj. 

� In the incidence matrixincidence matrixincidence matrixincidence matrix M(G) of a loopless digraph G, 
we set mi,j=+1 if vi is the tail of ej and mi,j= -1 if vi is the 

head of ej.
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Trees

A

B

D

F

C

E

Let G = (V, E ) be an undirected graph.
The following statements are equivalent,

1. G is a tree
2. Any two vertices in G are connected 
by unique simple path

3. G is connected, but if any edge is 
removed from E, the resulting graph is 
disconnected

4. G is connected, and  | E | = | V | -1
5. G is acyclic, and  | E | = | V | -1
6. G is acyclic, but if any edge is added 
to E, the resulting graph contains a 
cycle



Spanning Tree
A tree (T ) is said to span G = (V,E) if T = (V,E’) and 
E’      E⊆

V5V4

V3
V2

V1

V6

V5V4

V3
V2

V1
V6

V5

V4

V3
V2

V1

V6

For the graph shown on 
the right two possible 
spanning trees are shown 
below

For a given graph there are 
usually several possible spanning 
trees



Planarity
� Another problem in graph theory also has a simple 

solution that has major consequences.

� The question of planarity refers to whether a graph can 
be drawn in the plane without any edges crossing any 
other ones.

� Example : Connect 3 houses to 3 utilities

H1 H2 H3

U1 U2 U3

Draw edges from each U to each H without 
crossing edges. 



An Attempted Solution

H1 H2 H3

U1 U2 U3

No H2-U2 Connector

The graph connecting all vertices of a set of three to 
all vertices to another set of three is called K3,3

This graph is not planar.   That is to say, it is not 
possible to draw it in the plane with no edges crossing 
others.



Kn

� Kn is called the complete graph on n vertices.  It is the 
graph one gets by starting with n vertices and drawing 
an edge between each pair.

� Kn is planar or not depending upon n.

n=3
n=4



Kn Is Not Planar for n > 4

� As shown below, K5 is not planar.

� If n is bigger than or equal to 5 then Kn couldn’t 
possibly be planar.

A

B

C

D

E



Planar Graphs --- A Theorem
� All non-planar graphs (those that cannot be drawn in 

the plane without crossing edges) contain either a copy 
of K5 or K3,3 as a sub-graph. 

� Conversely, if neither K5 nor K3,3 is to be found 
embedded anywhere inside a graph, that graph will be 
planar.

Why’s it important?

� Any physical interpretation of a graph that wants to 
avoid crossings of edges needs to take this into account.

� The most obvious examples are printed circuit boards 
and micro-chips


