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Lecture 1: Introduction to Numerical Methods
• What are numerical methods and why do we need them?

• Course outline.

• Number Representation

• Floating point number

• Errors in numerical analysis

•Taylor Theorem

LE230: Numerical Technique

In Electrical Engineering



My advice

 If you don’t let a teacher know at what 
level you are by asking a question, or 
revealing your ignorance you will not learn 
or grow.

 You can’t pretend for long, for you will 
eventually be found out.  Admission of 
ignorance is often the first step in our 
education.

 Steven Covey—Seven Habits of Highly 
Effective People
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Course Objectives

 Understand numerical techniques, i.e., 
meaning and significance.

 Study numerical methods, i.e., Algorithms 
that are used to obtain numerical 
solutions of a mathematical problem.

 Apply numerical methods for solving 
engineering problems.
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Expectations

 In this course, “hopefully” you’ll 
learn

 Fundamentals of numerical methods

 Basic numerical methods, e.g., solving 
system of equations, numerical 
integration, etc.

 Implementation of numerical methods

 Basic Programming

 Application of numerical methods
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How do we solve an engineering 

problem?
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Problem Description

Mathematical Model

Solution of Mathematical Model

Using the Solution



Why use Numerical Methods?
To solve problems that cannot be solved 

analytically (i.e., exactly) or an analytical 
solution is difficult to obtain or not practical.
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Why use Numerical Methods?
 To solve problems that are intractable!
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What do we need?

Basic Needs in the Numerical Methods:

 Practical:  

Can be computed in a reasonable 
amount of time.

 Accurate: 

Good approximate to the true value,

Information about the approximation 
error   (Bounds, error order,… ).
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Outlines of the Course

 Taylor Theorem

 Number 
Representation

 Solution of nonlinear 
Equations

 Solution of linear 
Equations

 Regression and 
Interpolation

 Numerical 
Differentiation

 Numerical Integration

 Solution of ordinary 
differential equations 
(ODE)

 Solution of Partial 
differential equations 
(PDE)

 Eigenvalue Problem

 Graph Theory and 
Applications
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Solution of Nonlinear Equations

 Some simple equations can be solved analytically:

 Many other equations have no analytical solution:
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Solution of Systems of Linear Equations
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Cramer’s Rule is Not Practical
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Curve Fitting : Regression

 Given a set of data:

 Select a curve that best fits the data. One 
choice is to find the curve so that the sum 
of the square of the error is minimized.

x 0 1 2 

y 0.5 10.3 21.3 

 

 



14

Curve Fitting : Interpolation

 Given a set of data:

 Find a polynomial P(x) whose graph 
passes through all tabulated points.

xi 0 1 2 

yi 0.5 10.3 15.3 

 

 

  tablein  the is)( iii xifxPy 
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Integration

 Some functions can be integrated 
analytically:
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Solution of Ordinary Differential Equations
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Solution of Partial Differential Equations

Partial Differential Equations are more 
difficult to solve than ordinary differential 
equations:
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Representing Real Numbers

 You are familiar with the decimal system: 

 Decimal System:   Base = 10 , Digits (0,1,…,9)

 Standard Representations:

21012 10510410210110345.312  

part  part    

fraction    integer   sign

54.213
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Normalized Floating Point Representation

 Normalized Floating Point Representation:

 Scientific Notation: Exactly one non-zero digit appears 
before decimal point.

 Advantage: Efficient in representing very small or very 

large numbers.

exponent signed:,0

(fraction)

exponent       mantissasign
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Binary System

 Binary System:     Base = 2, Digits {0,1}

exponent signed     mantissa  sign

2.1 4321
n

ffff


10)625.1(10)3212201211(2)101.1( 
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Fact

 Numbers that have a finite expansion in 
one numbering system may have an 
infinite expansion in another numbering 
system:

 You can never represent 1.1 exactly in 
binary system.

210 ...)011000001100110.1()1.1( 



IEEE 754 Floating-Point Standard

 Single Precision (32-bit representation)

 1-bit Sign + 8-bit Exponent + 23-bit Fraction

 Double Precision (64-bit representation)

 1-bit Sign + 11-bit Exponent + 52-bit Fraction

22
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(continued)
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Significant Digits

 Significant digits are those digits that can 

be used with confidence.

 Single-Precision: 7 Significant Digits

1.175494… × 10-38 to 3.402823… × 1038

 Double-Precision: 15 Significant Digits

2.2250738… × 10-308 to 1.7976931… ×

10308
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Remarks

 Numbers that can be exactly represented 
are called machine numbers.

 Difference between machine numbers is 
not uniform

 Sum of machine numbers is not 
necessarily a machine number   



25

Calculator Example

 Suppose you want to compute: 

3.578 * 2.139

using a calculator with two-digit fractions

3.57 * 2.13 7.60=

7.653342True answer:
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48.9

Significant Digits - Example
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Accuracy and Precision

 Accuracy is related to the closeness 
to the true value.

 Precision is related to the closeness 
to other estimated values.
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Rounding and Chopping

 Rounding: Replace the number by the 
nearest machine number

 Round-off Error

 Chopping: Throw all extra digits.

 Truncation Error
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Rounding and Chopping
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Can be computed if the true value is known:

100*
 valuetrue

ionapproximat  valuetrue

Error RelativePercent  Absolute

ionapproximat  valuetrue

Error True Absolute
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Error Definitions – True Error
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When the true value is not known:

100*
estimatecurrent 

estimate previous estimatecurrent 

Error  RelativePercent    Absolute  Estimated

estimate previous estimatecurrent 

Error  Absolute  Estimated






a

aE



Error Definitions – Estimated Error
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We say that the estimate is correct to n
decimal digits if:

We say that the estimate is correct to n
decimal digits rounded if:

n10Error 

n 10
2

1
Error 

Notation



Loss of Significant Digits

 Subtraction of two “relatively close” 
numbers can lead to loss of significant 
digits (or significance)

 Example: Suppose 7 significant digits

x = 0.1234567, y = 0.1234566

x – y = 0.0000001 -> 1 significant digit
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Loss of Significant Digits Example

 Consider the following quadratic equation:

 Example: a=1, b=1111.11, c=1.2121 and 
assume 7 significant digits:

 Can use 

a
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Taylor Series
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Maclaurin Series

 Maclaurin series is a special case of Taylor 
series with the center of expansion a = 0.
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Maclaurin Series – Example 1
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Taylor Series
Example 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.5
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1.5
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exp(x)
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Maclaurin Series – Example 2
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Convergence of Taylor Series

 The Taylor series converges fast (few 
terms are needed) when x is near the 
point of expansion. If |x-a| is large, 
then more terms are needed to get a 
good approximation.
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Taylor’s Theorem
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Taylor’s Theorem
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Error Term
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Error Term - Example
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Alternative form of Taylor’s Theorem
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Taylor’s  Theorem – Alternative forms
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Mean Value Theorem
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Alternating Series Theorem
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Alternating Series – Example
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Example 3 – Taylor Series
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Example 3 – Error Term
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