LE230: Numerical Technique
In Electrical Engineering

Lecture 1: Introduction to Numerical Methods
* What are numerical methods and why do we need them?
* Course outline.
* Number Representation
* Floating point number
* Errors in numerical analysis
*Taylor Theorem



My advice

o If you don't let a teacher know at what
level you are by asking a question, or
revealing your ignorance you will not learn
or grow.

O You can't pretend for long, for you will
eventually be found out. Admission of
ignorance is often the first step in our
education.

m Steven Covey—Seven Habits of Highly
Effective People



Course Objectives

0 Understand numerical techniques, i.e.,

meaning and significance.

o Study numerical methods, i.e., A
that are used to obtain numerica
solutions of a mathematical prob

gorithms

em.

o Apply numerical methods for solving

engineering problems.



Expectations

o In this course, “hopefully” you’ll
learn
m Fundamentals of numerical methods

m Basic numerical methods, e.g., solving
system of equations, numerical
Integration, etc.

= Implementation of humerical methods
m Basic Programming
= Application of numerical methods



How do we solve an engineering
problem?

{ Problem Description

Mathematical Model

Using the Solution

|
| |
L Solution of Ma"thematical Model}
| |



Why use Numerical Methods?

To solve problems that cannot be solved
analytically (i.e., exactly) or an analytical
solution is difficult to obtain or not practical.

mean=20 standard deviation=3.5



Why use Numerical Methods?

O To solve problems that are intractable!

e e e,




What do we need?

Basic Needs in the Numerical Methods:
m Practical:

Can be computed in a reasonable
amount of time.

= Accurate:
Good approximate to the true value,

Information about the approximation
error (Bounds, error order,... ).



Outlines of the Course




Solution of Nonlinear Equations

o Some simple equations can be solved analytically:

X +4x+3=0

_ 4+ 42— 4(1)(3)

Analytic  solution  roots =
2(1)

x=-1and x = -3

o Many other equations have no analytical solution:

x° = 2x%245=0

N

> No analytic  solution
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Solution of Systems ot Linear Equations

X, +x,=3

X, +2x, =5

We can solveit as:

X, =3—x,, 3—x,+2x, =5
=>x,=2,x,=3-2=1

What to do1f we have

1000 equations in 1000 unknowns.



Cramer’s Rule 1s Not Practical

Cramer's Rule can be used to solve the system :

‘3 1‘ 1 3

5 2 1 5

xl:—l 1=1, x2:—1 1:2
‘1 2‘ 1 2

But Cramer's Rule is not practical for large problems.
To solve N equations with N unknowns, we need (N +1)(N —1)N!

multiplications.
To solve a 30 by 30 system, 2.3x 10> multiplications are needed.

A super computer needs more than 10” years to compute this.
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Curve Fitting : Regression

O Given a set of data:

x 0 1 2
y 05 103 21.3

o)

O Select a curve that best fits the data. One
choice is to find the curve so that the sum
of the square of the error is minimized.
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Curve Fitting : Interpolation

O Given a set of data:

x 0 1 2
yi 05 103 153

o Find a polynomial P(x) whose graph
passes through all tabulated points.

y; = P(x;) if x;1s in the table
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Integration

O Some functions can be integrated
analytically:

3 3
jxdx:lx2 E 4

1 27, 2 2

But many functions have no analytical solutions :

“ 2
Ie‘x dx =71
0
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Solution of Ordinary Differential Equations

A solution to the differential equation :
X(t)+3x(t)+3x(t)=0
x(0)=1;x(0)=0

1s a function x(¢) that satisfies the equations.

* Analytical solutions are available for

special cases only.
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Solution of Partial Differential |

H.quations

Partial Differential Equations are more
difficult to solve than ordinary differential

equations:

2 2
aI;:aZIZ:()
ox~ Ot

u(0,t) =u(l,t) =0, u(x,0) =sin(zx)

17



Representing Real Numbers

o You are familiar with the decimal system:

312.45=3x10* +1x10" +2x10° +4x10™"' +5%107°

o Decimal System: Base = 10, Digits (0,1,...,9)

O Standard Representations:

+ 312 . 45
sign 1nteger  {raction

part part

18




Normalized Floating Point Representation

o Normalized Floating Point Representation:

+ d. f, f, fi f, x 107"
htf /s ) .

sign mantissa exponent

(fraction)

d+#0, =*n:signedexponent

o Scientific Notation: Exactly one non-zero digit appears
before decimal point.

o Advantage: Efficient in representing very small or very
large numbers.
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Binary System

O Binary System:

Base = 2, Digits {0,1}

+ 1. fi o S35 /4 Xzi’{l

sign  mantissa signed exponent

(1.101)5 = (1+1x2

1 ox272 +1x273)10 = (1.625)¢
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Fact

o Numbers that have a finite expansion in
one numbering system may have an

infinite expansion in another numbering
system:

(1.1);9 = (1.0001100110 01100...),

O You can never represent 1.1 exactly in
binary system.
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IEEE 754 Floating-Point Standard

0O Single Precision (32-bit representation)
= 1-bit Sign + 8-bit Exponent + 23-bit Fraction

S| Exponent? Fraction?23

0 Double Precision (64-bit representation)
m 1-bit Sign + 11-bit Exponent + 52-bit Fraction

S| Exponentl! Fraction>2
(continued)

22



Significant Digits

Significant digits are those digits that can

be used with confidence.

Single-Precision: 7 Significant Digits
1.175494... x 1038 to 3.402823... x 1038

Double-Precision: 15 Significant Digits

2.2250738... x 10398 to 1.7976931... x
10308
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Remarks

o Numbers that can be exactly represented
are called machine numbers.

O Difference between machine numbers is
not uniform

o Sum of machine numbers is not
necessarily a machine number
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Calculator Example

O Suppose you want to compute:
3.578 * 2.139
using a calculator with two-digit fractions

3.57 * 213 = 760
True answer: [ NGESIN
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Significant Digits - Example
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Accuracy and Precision

O Accuracy is related to the closeness
to the true value.

O Precision is related to the closeness
to other estimated values.
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Increasing precision

Increasing accuracy
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Rounding and Chopping

0o Rounding: Replace the number by the
nearest machine number

> Round-off Error

Chopping: Throw all extra digits.
» Truncation Error
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Rounding and Chopping

Chopping Rounding

x—Ax I*—»i«—»l x4+ Ax
Ax/2'Ax/2

ﬁ“

18

@:::::::

\y

Underflow “hole”
at zero

| Overflow —
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Error Definitions — True Error

Can be computed if the true value is known:

Absolute True Error

E, =| true value —approximation

Absolute Percent Relative Error

true value — approximation

& =

true value

*100
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Error Definitions — Estimated Etror

W

nen the true value is not known:

Estimated Absolute Error

E = ‘ current estimate — previous estimate

Estimated Absolute Percent Relative Error

current estimate — previous estimate

E =

a

current estimate

*100
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Notation

We say that the estimate is correct to n
decimal digits if:

‘Error ‘ <107"

We say that the estimate is correct to n
decimal digits rounded if:
|

‘Error ‘ < —x10™"
2
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Loss of Significant Digits

O Subtraction of two “relatively close”
numbers can lead to loss of significant
digits (or significance)

0 Example: Suppose 7 significant digits

x = 0.1234567, y = 0.1234566

x —y = 0.0000001 -> 1 significant digit
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Loss of Significant Digits Example

o Consider the following quadratic equation:
—bi\/b2 —4ac
2a

If b* >>4dac,b ~ \/b2 —4ac
o Example: a=1, b=1111.11, c=1.2121 and
assume 7 significant digits:

b* =1234565 >> 4ac = 4.8484,b* —4ac =1234560

Vb> —4ac =1111.108, x, =—0.001000 = —0.001091
o Can use x, =-2¢/(b++/b* —4ac)=-0.001091

ax> +bx+c=0;x,, =




Taylor Series

The Taylor series expansion of f(x) about a:

£ (a) )

fla)+f (@) (x—a)+ > (x—a)” + 3
or
Taylor Series = i f(k)(a) (x — a)

k= O

If the series converge, we can write :

(©@)

f(x)= Z f(k)(a) (x—a)F

k=0

(x — a)3 + ..
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Maclaurin Series

Maclaurin series is a special case of Taylor
series with the center of expansion a = 0.

The Maclaurin series expansionof f(x):

| (2) 3)
f(O)+f(O)x+f 2'(O)x2+f 3'(O)x3+...

It the series converge, we can write:

F)= DL p0 ) 1k
(=0 k!
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Maclaurin Series — Example 1

Obtain Maclaurin series expansion of f(x)=e"

fx)y=e f(0)=1

f'(x)=e £'(0)=1
fPo=et fP0=1
=t fR0)=1 fork>1

oo 0k 2 3
et = Zlf(k)(O) K= X x4
K K 21 3

The series converges for x| < .

+...
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2.5

1.5}

0.5

0.2

0.4

0.6

0.8
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Maclaurin Series —

Example 2

k=0

Obtain Maclaurin series expansion of f(x)=sin(x):

£(x) =sin(x) £(0)=0
£'(x) = cos(x) £1(0)=1
fAPw=-sin(x)  f20)=0
fP==cosx)  fP0)=-1

. B < f(k)(O) ko X X
sin(x)= Z x X" =x- 3 + a — +

The series converges for x| < ©©.
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x-x3/31+x°/5!

sin(x)

x-x3/3!
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Convergence of Taylor Sertes

O The Taylor series converges fast (few
terms are needed) when x is near the
point of expansion. If |x-a| is large,
then more terms are needed to get a
good approximation.
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Taylotr’s Theorem

If a function f(x) possesses derivatives of orders 1,2,...,(n+1)

on an interval containing a and x then the value of f(x)1s given by :

(n+1) terms Truncated
Taylor Series

Remainder
where :

P A )

"= ! (x—a)""! and & is between a and x.
n—+1)!
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Taylotr’s Theorem

We can apply Taylor's theorem for :

f(x):l1 with the point of expansion a =0 1if [xI<]1.
— X

If x =1, then the function and its
derivatives are not defined.

— Taylor Theorem 1s not applicable.
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Error Term

To get an 1dea about the approximation error,
we can derive an upper bound on:

(n+1)
Rn — f (é:) (x_a)n-l-l

(n+1)!

for all values of & between a and x.
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Error Term - Example

How large is the error if we replaced f(x) =e” by
the first 4 terms (n = 3) of 1ts Taylor series expansion
ata=0 when x=0.27

f(")(x) — ¥ f(”)(éf) < V2 forn = 1
(n+1)
R = f (5) (x_a)fH‘l

" (n+1)!

60'2

n\ﬁ( 1)'(0.2)’”‘+1 = |R;|< 8.14268E — 05
n—+1).

R
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Alternative form of Taylor’s Theorem

Let f (x) have derivatives of orders 1,2,...,(n+1)

on an interval containing x and x + & then :

n (k)
faem=3 "1 k!(x)hk +R,

k=0

(h = step size)

(n+1)
(n+1)!

where & 1s between x and x+h
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Taylor )S Theorem — Alternative forms

n (k) (n+1)
f(x):Zf (a)(x_a)k_l_f (é:)

ey k! (n+1)!

where &£ 1s between a and x.

(X . a)n+1

a—>x, x—>x+h

f(k)(x) L) e
(n+1)!

where &£ 1s between x and x+ h.

f(x+h)= Z
k=0
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Mean Value Theorem

If f(x) 1s a continuous function on a closed interval[a, b]
and i1ts derivativeis defined on the open interval (a, b)
then there exists ¢ € (a,b)
e fO-F@

b—a
Proof : Use Taylor's Theoremtfor n=0,x=a, x+h=>b

Jb)=fa)+ f'(C)(b-a)
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Alternating Series Theorem

Consider the alternating series:

It

Si’l

S=a,—a,+a,—a, +---
(

4

a,2a,20a,20a, 2+

and

lim a, =0

. Nn—>X0

then

( °
The series converges

and

S-S,

S an+1

\

: Partial sum (sum of the first n terms)

a ., . First omitted term

n+l °
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Alternating Series — Example

1

1 1

sin(1) can be computedusing : sin(l) =1- 3 +

This 1s a convergent alternating series since :

aza,z2a,z2a, = and lim a, =0

n—o0

Then :

5 7

+ ..

51



Example 3 — Taylor Series

2x+1

k!

Obtain Taylor series expansion of f(x)=e .a=05
f(x)=e! £(0.5) = ¢>
f'(x)=2e>" £1(0.5) = 22
FP) =4 £@(0.5)=4¢
f(k)(x)_zk 2x+1 f(k)(05)=2k62
(k)
62x+1 Zf (O 5) ( _0. 5)
k=0 k!
2 k
= % 1267 (x-0.5) + 4¢? (x—;.s) pog2k2 @70
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Example 3 — Error Term

f(k) (x) — 2k 62x+1

(n+1)
f (é:) (x . 0.5)n+1
(n+1)!

2n+1 82§+1 (1 o 0°5)n+1
(n+1)!

Error =

|Err0r| =

2n+1 (0‘5)n+1 max
(n+1)! &elos.

3
e

(n+1)!

|Err0r| < ‘ez‘f“

|Err0r| <
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