Lab Assignment 8

Given the following problems:

(i) Let $R = 1 \text{ k}\Omega$, $C = 1 \mu\text{F}$, find

(a) $v_C(t)$ for a series *RC* circuit with $v_C(0^-)=0$ and voltage source $V_s(0^+) = u(t)$ V.

(b) $v_C(t)$ for a parallel *RC* circuit with $v_C(0^-)=0$ and current source $I_s(0^+) = u(t)$ A.

(ii) Let $R = 1 \Omega$, L = 1 mH, find

(c) $i_L(t)$ for a series *RL* circuit with $i_L(0^-)=0$ and voltage source $V_s(0^+) = u(t)$.

(d) $i_L(t)$ for a parallel *RL* circuit with $i_L(0^-)=0$ and current source $I_s(0^+) = u(t)$.

(iii) Repeat problem (i) with source changed to triangular pulse of height 1 and width 1 ms.(iv) Repeat problem (ii) with source changed to triangular pulse of height 1 and width 1 ms.Write codes using the following methods to solve them:

(i) Euler (ii) mid-point (iii) RK2 (iv) RK4

NOTE:

 $\underline{1.}u(t-a)$ denotes the unit step function given by:

$$u(t-a) = \begin{cases} 1 & t \ge a \\ 0 & t < a \end{cases}$$

2. Continue computations until systems reach "steady" states.