lLecture 10

Ordinary Differential Equations
Part I1

+»Solving systems of ODEs
«+Multiple step Methods
«+Boundary value Problems



Solving a System of First Order ODEs

o Methods discussed earlier such as Euler,
Runge-Kutta,... are used to solve first
order ordinary differential equations.

O The same formulas will be used to solve
a system of first order ODEs.

m In this case, the differential equation is a
vector equation and the dependent variable is

a vector variable.



Fuler Method for Solving a System of
First Order ODEs

Recall Euler method for solving a first order ODE:

dy(x)
dx

Given =f(y,x), ya)=y,

Euler Method -

yla+h)=y(@)+h f(y(a),a)
v(a+2h)=y(a+h)+h f(y(a+h),a+h)
v(a+3h)=y(a+2h)+h f(y(a+2h),a+2h)



Example - Fuler Method

Euler method to solve a system of n first order ODEs.
_fl(Y,X)_ _Y1(a)_
Y,
Given i24C) =F{,x)= St ) , Y(a)= y2(4)
dx
(Y x) | v,(a)

Euler Method -

Y(a+h)=Y(a)+h F(Y(a),a)
Y(a+2h)=Y(@+h)+hFX(a+h),a+h)
Y(a+3h)=Y(@a+2h)+hF(XY (a+2h),a+2h)



Solving a System of 7 First Order ODEs

(%) ]
o Exactly the same ()
formula is used but  Y®=|" Y is nxl vector
the scalar variables Y ()
and functions are ) 'dy_f
replaced by vector 7 | (A%
variables and vector dv) |92:| | £(.%)
. =1 dx |~ =F(Y,x)
values functions. dx
o Y is a vector of % RACEE
length n. -
o F(Y,x) is a vector Y(a+h) =Y(a)+h F(Y(a).a)
valued function. Y(a+2h) =Y(a+h)+hF(Y(a+h),a+h)

Y(a+3h)=Y(a+2h)+hF(Y(a+2h),a+2h)
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Example :

FEuler method for solving a system of first order ODE:s.

me)}{ Y, }zF(Y,x), Y(O){ymoq{—l}
y,(x) 1=y, y,(0) 1

Two steps of Euler Method with h=0.1
STEP 1:
Y(O+h)=Y(0)+h F(Y(0),0)

{yl(O.l)}:{yl(O)}_o.l{ y,(0) }:{ ~1+0.1 }{—0.9}
y,(0.1) | | y,(0) 1-y,(0)| |1+0.1(1+1) 1.2
STEP 2:

Y(0+2h)=Y(h)+h F(Y(h),h)

%0.2)] [ (0. o v,0.) | [ -09+0.12 ] [-0.78
v,(02)| | v,0.D]| |1-y0.)] [12+.11+0.9)| | 1.39




Example :
RK2 method for solving a system of first order ODEs

|:):71(x):|:|: Y2 :|=F(Y,x), Y(0)=|:y1(0)}:|:_1:|
Y, ()| 1=y y,(0) 1

Two steps of second order Runge — Kutta Method with h=0.1
STEP1:

v,©0) ] [o.1
Kl=h F(Y(0),0)= 0.1{ } = { }
1—y.(0)| |02

¥,(0)+0.2 }_ {0.12}

K2=h FY(0)+K1,0+h) = 0.1{
1—(y,(0)+0.1)| |0.19

Y(O+h)=Y(0)+0.5(K1+K?2)
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Example :
RK2 method for solving a system of first order ODEs

P(x)}{ Y5 }:F(Y,x), Y(O):{yl(o)}{—l}
Y, (X) 1-y, y,(0) 1

STEP 2 :

{ y,(0.1) } {0.1195}
Kl=h F(Y(0.1),0.1)=0.1 =
1-y,(0.1)| |0.1890

y,(0.1)+0.189 }_{0.1384}

K2=h F(Y(0.)+KL0.1+h) =0.1
1—(y,(0.)+0.1195) | |0.1771

Y(0.1+h)=Y(0.1) +0.5(K1+ K2)

»(0.2) | |-0.89 +1 0.1195 N 0.1384 1) |-0.7611
v,(0.2) 11195 | 21]0.1890| |0.1771|) | 1.3780




Methods for Solving a System ot First Order ODEs

o We have extended Euler and RK2 methods to
solve systems of first order ODEs.

O Other methods used to solve first order ODE can
be easily extended to solve systems of first
order ODEs.



High Order ODEs

o How do we solve a second order ODE?

X+3x+6x=1

o How do we solve high order ODESs?
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The General Approach to Solve ODEs

High order ODE Convert System of first order ODEs Solve )

_Z.l | . i ZZ |
X+3x+6x=1 Convert _22 - _1 - 322 - 621 ~ | | Solve
%(0) =1;x(0) =4 7(0) = 4
1




Conversion Procedure

High order ODE Convert System of first order ODEs Solve )
] ]

1. Select the dependent variables

One way is to take the original dependent
variable and its derivatives up to one degree less
than the highest order derivative.

2. Write the Differential Equations in terms of
the new variables. The equations come from the
way the new variables are defined or from the
original equation.

3. Express the equations in a matrix form.
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Remarks on the Conversion Procedure

High order ODE Convert System of first order ODE Solve )

1. Any nth order ODE is converted to a system of n
first order ODEs.

2. There are an infinite number of ways to select
the new variables. As a result, for each high
order ODE there are an infinite number of set of
equivalent first order systems of ODEs.

3. Use a table to make the conversion easier.
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Example of Converting a High Order
ODE to First Order ODEs

Convert x+3x+6x=1, x(0)=1; x(0)=4
to a system of first order ODEs

1.Select a new set of variables

(Second order ODE = We need two variables)

7, =X

One degree less than the
Ly = X/ highest order derivative
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Example ot Converting a High Order
ODZE to First Order ODEs

old | new | Imitial | Equation

name| name| cond.

X Z 4 2 =2,

by 2, | z,=1-3z,-6z
N P

2, | [1-3z,—-6z 1
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Example ot Converting a High Order
ODZE to First Order ODEs

Convert
X+2x+7x+8x=0
x(0)=9, x(0)=1; x(0)=4

1.Select a new set of variables (3 of them)

7, =X

Z, =X One degree less than the
highest order derivative

i3 =X ]
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Example ot Converting a High Order
ODZE to First Order ODEs

old | new | Imtial | Equation
name| name| cond.
X Z 4 2 =2,
X Z, 1 2, =2,
X Zs 9 2, =—2Z, -7z, —8zZ,
|| Z, ) 4
2, | = 23 ,Z(0)=]|1
| | —2z3-7z,—8z 9
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Conversion Procedure for Systems of

High Order ODEs

System of high order ODEs|Convert System of first order ODE Solve )
] ]

1. Select the dependent variables

Take the original dependent variables and their
derivatives up to one degree less than the
highest order derivative for each variable.

2. Write the Differential Equations in terms of
the new variables. The equations come from the
way the new variables are defined or from the
original equation.

3. Express the equations in a matrix form.
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Example ot Converting a High Order
ODZE to First Order ODEs

Convert

X+3x+2x+8y=0

V+2xy+x=2

x(0) =4;x(0) =2;x(0) =9; y(0) =1, y(0) = -3

1.Select a new set of variables ((3+ 2) variables)

=X
. = | One degree less
;:).C. than the highest
’ order derivative
l4 =Y

s =Y
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Example of Converting a High Order

ODE to First Order ODEs

old mew |Initial | Equation

name [name | cond.

X 4| 4 21 =2

X 27 2 =23

X 23 9 23=-923 —22, —824
Y 24 1 4= 25

y Zs -3 I5=2—2p —2z124

20



Solution of a Second Order ODE

o Solve the equation using Euler method. Use h=0.1

X+2x+8x=2
x(0)=15x(0)=-2
Select a new set of variables: z, = x,z, = x

The second order equation 1s expressed as :
: z ] | Z ) 1
Z=F2Z)=||= o LZ(0)=
Z, | |2-2z,-38z -2

u(t) +et[3cos\/7t B 547 sin ﬁtj
4

AnalyticSolution : x(¢) = —=
y (1) 1 >
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Solution of a Second Order ODE

F(Z)=

2-27,-38z |
Z(0+0.1)=Z(0)+hF(Z(0))

)

1

0.8
22

-2

+0.1

+0.1

,Z2(0) =

-2

-2.2

h

—2 2-2(-2)-3(1)
Z2(0.2)=Z720.1)+hF(Z(0.1))

2-2(-2.2)-8(0.8)

0.1

—2.2

0.8

- 0.58 |
)




Adams Moulton multi-step method

O All the methods discussed so far are so-
called “single-step” method.

0 In multi-step methods, estimates y.,, from

more than one y, and Xx,.

23



Single Step Methods

0o Single Step Methods:

m Euler, Heun’s method and Runge-Kutta are
single step methods.

m Estimates of y;,, depends only on y; and Xx;.

BarVa

24



Multi-Step Methods

O 2-Step Methods

= In a two-step method, estimates of vy, ,
depends on vy, Yi.y, X;, and X 4

25



Multi-Step Methods

0 3-Step Methods

= In an 3-step method, estimates of vy,
depends on vy, ,Yi.y ,Yia Xi, Xi.1, @and X

§eZa

Xi-2 Xi-1 X; Xit1

26



2-Step Predictor-Corrector

Predictor :y. 6 =y, + h(%f(-xi,yi)_%f(xil’yil )j
Corrector : y' =y, + h(%f(xm, yik+11)+%f('xi’yi)j

e At each iteration one prediction step is done
and as many correction steps as needed.

k
e JYiu isthe estimate of the solution at x;, ,
after k correction steps.
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3-Step Predictor-Corrector

Predictor :
23 16
0
O =y +h| == f(x.,y.)——
yl+1 yl (12 f( [ yl) 12
Corrector :

5
J s yio) + Ef(xi—z, )’i—z)j

5 _ 8 1
Vi, =Y, +h(—f<x,-+1,yf+f> () —Eﬂx,-l,y,-l)j

12
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4-Step Adams-Moulton Predictor-
Corrector

Predictor : (Adams - Bashforth Predictor)

yO :y (sz(xl’yl) 59f(xz l’yz 1) j
it1 l 24 +37f(xl Z’yz 2) 9f(xz 3’yz 3)

Corrector : (Adams - Moulton Corrector)

k [9f<xl+1,y" ) +191(x;, y,) j
Y, t—

y'+1
| SEX Y+ (X5, Y,25)

Next slide : Predictor (Top), Corrector (Bottom)




Local Truncation

Order Bo - B2 B3 Ba Bs Error
1 1 Lpopyg
2
‘5 G
2 3/2 ~1/2 ﬁhi‘-f 1€
3 23/12 _16/12 5/12 ih‘ifi?![g
251
4 55/24 _59/24 37/24 —9/24 ?mhﬁflﬂg]
5 1901/720 _2774/720 2616,/720 —1274,/720 251/720 : Mﬂh‘*flﬁlqga
19 DB?’ .
6 4277 /720 —7923/720 9982,/720 —7298/720 2877/720 _475/720 0.4 hf bl(g]
Local Truncation
Order Po Bi Ba B3 Ba Bs Error
2 1/2 1/2 —iﬁﬂf”[ﬂ
12
3 5/12 8/12 _1/12 _ 1 g
24
4 Q/24 19/24 —5/24 1/24 Eh#'d";g:
720
5 251/720 646,/720 —264/720 106/720 —19/720 11:?1::: F5g)
& 47571440 1427 /1440 —798,/1440 482/1440 —173/1440 27 /1440 803 = g

60,480




How Many Function Evaluations are
Doner?

Number of function evaluations is the
Computational Speed or Efficiency

How many evaluations per step?

No need to repeat the evaluation of
function f at previous points

Only one new function evaluation in the
predictor

One function evaluation per correction step

# of function evaluations = 1+ number of corrections
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Example

Solve

Q=2x+ yox y(0)=2
dx

h=0.1, Use 2—step Predictor corrector Method
compute y(0.4)

We need two 1nitial conditions to use the
2 — step Predictor corrector Method
We will first use RK?2 to estimate y(0.1)

32



Example

We need two initial conditions

Use RK?2 tocompute y(0.1) thenwe can use

the Predictor corrector Method

D gy vix  y(0)=2, h=0.1,
dx

K1=0.1(0) =0
K2=0.100.2+0.4)=0.06
(0.1) = 2+0.5(0.06) = 2.03
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Example

%:2)64—);2)6 yl._lzy(O)zz, y; =y(01)=203, h=0.1
X

Predictor : y?H =y, +h( S (x,y) _f(xz 1> Vi 1)j

=2.03+ 0.1(2 (2(0.1) +2.03° (0.1))—%(0 + o)j =2.1218

1 1
Corrector: y(0.2) = y§+1 =y, + h(z S (x0 y?ﬂ) +§f(x,-, y,-)j

= 2.03+0, 1@ 2(0.2)+2.1218 (0.2))%(2(0. 1)+2.032(0, 1))) = 2.1256
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Multi-Step Methods

O Single Step Methods

= Euler and Runge-Kutta are single step
methods.

= Information about y(x) is used to estimate
y(x+h).

0 Multistep Methods

= Adam-Moulton method is a multi-step method.

m To estimate y(x+h), information about y(x),
y(x-h), y(x-2h)... are used.

35



Number of Steps

O At each iteration, one prediction step is
done and as many correction steps as

needed.
o Usually few corrections are done (1 to 3).

o It is usually better (in terms of accuracy)

to use smaller step size than corrections.

36



Boundary-Value and
Initial Value Problems

Initial-Value Problems | |Boundary-Value Problems
are at one point of the not at one point of the
independent independent variable
variable o More difficult to solve than

initial value problem

L0054 x=e 2 ¥+2x+x=e"

x.\=1, x,:z.s x?zl, x’:l.S

same different

37




The Shooting Method

O
y/lg Target ’




The Shooting Method

O O o
®

O

Target ’




The Shooting Method




Solution of Boundary-Value Problems

Shooting Method for Boundary-Value Problems

1.

Guess a value for the auxiliary conditions at one
point of time.

2. Solve the initial value problem using Euler,

Runge-Kutta, ...

Check if the boundary conditions are satisfied,
otherwise modify the guess and resolve the
problem.

O Use interpolation in updating the guess.
o It is an iterative procedure and can be

efficient in solving the BVP.
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Solution of Boundary-Value Problems

Shooting Method

Boundary-Value
Problem

Find y(x)to solve BVP
Vy+2y+y=x"
v(0)=0.2, y(1)=0.8

Initial-value
convert
Problem

1. Con\/ert the ODE to a system of
first order ODEs.

2. Guess the initial conditions that
are not available.

3. Solve the Initial-value problem.

5. If needed modify the guess and
resolve the problem again.

42



Example 1
Original BVP

y—4y+4x=0
y(0)=0, y(1)=2

43



Example 1
Original BVP

y—4y+4x=0
y(0)=0, y(1)=2

D

2.

0

44



Example 1
Original BVP

D

2.

0
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Example 1
Original BVP

D 2.0
/7
7/
7/
/7
7
7’
Ve
~
[ to be
determined
1
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Example 1
Stepl: Convert to a System of First Order ODEs

y—4y+4x=0

y(0)=0, y(D)=2
Converttoa systemof first order Equations

Y Y, _Y1(O)_ 0
Y| 4y, —x)] |y,(O0)] |?

The problem will be solved using RK2 with h =0.01
for different values of y, (0) until we have y(1)=2

47



Example 1
Guess # 1

y—4y+4x=0
y(0)=0, y1)=2

Guess#l
y(0)=0

) -0.7688
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Example 1
Guess # 2

y—4y+4x=0
y(0)=0, y1)=2

Guess#2
y(0)=1

49



Example 1

Interpolation for Guess # 3

y(1)]

0.99

y—4y+4x=0
y(0)=0, y(1)=2
Guess y(0) |y(1)
1 0 -0.7688
2 1 0.9900

0 1
-0.7688

2 y'(0)
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Example 1

Interpolation for Guess # 3

y(1)]

/

2

0.99 | Guess 3 \

1.5743

y—4y+4x=0
y(0)=0, y(1)=2
Guess y(0) |y(1)
1 0 -0.7688
2 1 0.9900

i 2 y(@©)

-0.7688

51



Example 1

Guess # 3
j}—4y+4)€:0 /02_000
y(0)=0, y1)=2 //
7’

Guess#3 /,’
y(O) — 15743 //,

0 1 x
y(1)=2.000 This is the solution to the

boundary value problem.
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Summary of the Shooting Method

1.

Guess the unavailable values for the
auxiliary conditions at one point of the
independent variable.

. Solve the initial value problem.
. Check if the boundary conditions are

satisfied, otherwise modify the guess and
resolve the problem.

. Repeat (3) until the boundary conditions

are satisfied.
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Properties of the Shooting Method

1. Using interpolation to update the guess often
results in few iterations before reaching the

solution.

2. The method can be cumbersome for high order
BVP because of the need to guess the initial
condition for more than one variable.
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Solution of Boundary-Value Problems

Discretization method :

Finite Difference Method

Boundary-Value
Problems

Algebraic
convert _
Equations

Find y(x)to solve BVP
Vy+2y+y=x"
v(0)=0.2, y(1)=0.8

Find the unknowns y4, v¥,, Y3

A O
Y1y,=7?

—3r
yO=0.2 y2 .
O

0 025 05 0.75 1.0 x
x0 X1 X2 X3 X4
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Solution of Boundary-Value Problems
Finite Difference Method

O Divide the interval into n sub-intervals.

O The solution of the BVP is converted to
the problem of determining the value of
function at the base points.

O Use finite approximations to replace the
derivatives.

O This approximation results in a set of
algebraic equations.

O Solve the equations to obtain the solution
of the BVP.
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Finite Difference Method
Example

2

y+2y+y=x
y(0)=0.2, y(1)=0.8 To be

determined

Divide the interval R
[0,1 ]inton =4 y
intervals

o\
&
<
-bl
o
00]

Base points are
x0=0

x1=0.25 ¥o=0.2 ¢
x2=.5
x3=0.75 0O 025 0.5 0.75 1.0 x
x4=1.0 x0 x1 X2 X3 x4

v
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Finite Difference Method

Example

y+2y+y=x2

y(0)=0.2, y(1)=0.8

Divide the interval
[0,1]inton =4
intervals

Base points are
x0=0

x1=0.25
x2=.5
x3=0.75
x4=1.0

Replace

. Vil — 2yt Yig
y - h2

. Yivl — Vi-1
Y oh
j}+2)'/+y=x2

Becomes

central difference formula

central difference formula

Virl =2y t¥ia ) Yit1 — Vi + 2

h2

2h

Yi =X
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Second Order BVP

2
d_2y+ W, y=x> with y(0)=0.2,  y(1)=0.8
dx dx
Let h=0.25

Base Points

Xo = O, X1 = O.25,X2 — 05, X3 = O.75,X4 =1

dy Y(x+h)—y(xX) _ Yin Vi

dx h h

dzy N y(x+h)-2y(x)+ y(x—h) _ Vi —2y: + ;4
dx” h? h?
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Second Order BVP

d*y _d

—2+2—y+y x°

dx dx

Viet “2Vit Vit o Yiel = Vi | =% (=123
h2 h yl_ I e )

XO:O X12025 X2:OS X3:O75 X4:1
Yo=02, yy =0y, =0y3=" ¥, =0.38

16(Yi+1 —2y; + Yi—1)+ 8(Yi+1 — )i )+ Vi = Xi2

b
24y, —=39y; +16y;_ = x;
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Second Order BVP

24y, -39y, +16y._, = x>
i=1 24y,-39y +16y,=x,
1=2 24y,-39y,+16y, =x22
=3 24y4—39y3 +16y, —x3

-39 24 0 Ty ] [025*-16(0.2)
16 -39 24 |y, |= 0.5
0 16 -39y, | |0.75 -24(0.8)

Solution y, =0.4791,y, =0.6477,y, =0.7436




Second Order BVP

2
d—z+2ﬂ+y=x2
dx dx

=2y 4y, = Vi
Yitl Yi T Yiq _|_2y1+1 Ji +yi:xi2 i:1,2,...,100

h? h

xo =0, x,=0.01,x,=0.02 ...

y() — 0.2, yl m— ?, y2 — ?, .

Yoo =7 Yoo =0.8

10000(Yi+1 -2y, + )’i—1)+ 200(Yi+1 ~ Yi)+ Vi = xi2
10200y.,, —20199y, +10000y._, = x.”
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Summary of the Discretization Methods

O Select the base points.
Divide the interval into n sub-intervals.

o Use finite approximations to replace the
derivatives.

o This approximation results in a set of
algebraic equations.

o Solve the equations to obtain the solution
of the BVP.

O
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Remarks

Finite Difference Method :

m Different formulas can be used for
approximating the derivatives.

m Different formulas lead to different
solutions. All of them are approximate
solutions.

m For linear second order cases, this
reduces to tri-diagonal system.
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