l.ecture 11

Partial Differential Equations
-]

Partial Differential Equations (PDEs).

What is a PDE?
Examples of Important PDEs.

Classification of PDEs.



Partial Ditterential Equations

A partial differential equation (PDE) is an
equation that involves an unknown function
and its partial derivatives.

Example :
0% u(x,t) ~ O u(x,t)
Ox” ot

PDE involves two or more independent variables

(in the example x and ¢ are independent variables)
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Notation

0 u(x,t)
uxx — 2
Ox
0° u(x,t)
uxt o
ox Ot

Order of the PDE = order of the highest order derivative.



Linear PDE

Classification

Example of linear PDE :

2u, +lu,+3u,+4u, +cos(2t)=0
2u,—3u +4u, =0
Examples of Nonlinear PDE

2u, + (uxt)2 +3u,=0

Ju, +2u,+3u, =0

2u,. +2u_ u +3u, =0




Representing the Solution of a PDE
(Two Independent Variables)

Three main ways to represent the solution

Different curves are
used for different
values of one of the
independent
variable

X1
Three dimensional
plot of the function
T(x,t)

”

T=3.5

I R P |

The axis represent
the independent
variables. The value
of the function is
displayed at grid
points



Heat Equation

ice Ice

X
Thin metal rod insulated
everywhere except at the
edges. At t =0 the rod is
placed in ice

0° T(x,t) 0T(x,t) B
o> ot

T70,0)=T1,t)=0

T (x,0) =sin(x x)

0

Temperature Temperature at
4 different x at t=0

/

\ Position Xx

Temperature at
different x at t=h




Examples ot PDEs

PDEs are used to model many systems in
many different fields of science and
engineering.

Important Examples:
m Laplace Equation
m Heat Equation
= Wave Equation




Laplace Equation

) 2 5
0 u(x,zy,z) - u(x,zy,z) L u(x,zy,z) .,
Ox Oy 07

Used to describe the steady state distribution of
heat in a body.

Also used to describe the steady state
distribution of electric charge (or electric
potential) in a body.




Heat Equation (Diffusion Equation)

Gu(x,y,z,t):a[ﬁzu O°u @]

s 1
ot o e

The function u(x,y,z,t) is used to represent
the temperature at time t in a physical body
at a point with coordinates (x,y,z)

o IS the thermal diffusivity. It is sufficient to
consider the case a = 1.



Simpler Heat Equation

¢ [iv1] L :c

Ot Ox>

T(x,t) is used to represent the temperature
attime t at the point x of the thin rod.
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Wave Equation

- -
ot* ox*  oy* 07

0%u(x, y,2,t) _62(8214 0’u aqu

The function u(x,y,z,t) is used to represent the
displacement at time t of a particle whose
position at rest is (x,),2) .

The constant c represents the propagation
speed of the wave.
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Classification of PDEs

Linear Second order PDEs are important
sets of equations that are used to model
many systems in many different fields of
science and engineering.

Classification is important because:

m Each category relates to specific engineering
problems.

m Different approaches are used to solve these
categories.
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Review of Conic Sections
Classification of Quadratic Curve

A quadratic curve, generally given by
AXx’+Bxy+Cy>+Dx+Ey+F =0,

(with A,B,C,D, E, F arereal)
is classified based on (B*—4AC) as follows:

B> —4AC <0 Elliptic ex:x" +xy+y —-1=0

B> —4AC =0 Parabolic ex :3x* —6xy+3y>+2x-5=0
B> —4AC >0 Hyperbolicex:xy—y>=5y+1=0
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Linear Second Order PDEs

Classification

A second order linear PDE (2 -1ndependent variables)
Au,+Bu +Cu,+D =0,
A, B, and C are functions of x and y
Dis a function of x, y,u,u_,and u,
is classified based on (B*—4AC) as follows:
B> —4AC <0 Elliptic
B> —4AC=0  Parabolic

B> —4AC >0 Hyperbolic

14



Linear Second Order PDE

Examples (Classification)

82u(x, y) N 82u(x, y)

Laplace Equation
P 1 ox” dy”

A=1,B=0,C=1= B> -4AC<0

— Laplace Equation is Elliptic

One possible solution: u(x,y)=e" siny
u,=e siny, u, =e siny

X . X .°
u,=e cosy, u, =-—e siny

Uy, + Uy, =0

=0

15



Linear Second Order PDE

Examples (Classification)

2

Heat Equation aa u();,t) _Julx) =0
Ox ot

A=a, B=0, C=0= B*-4AC =0

— Heat Equation is Parabolic

>, 0%u(x,1)  O°u(x,1)

oxt o
A=c¢*>0, B=0, C=-1=B*-4AC>0
— Wave Equation is Hyperbolic

Wave Equation ¢

=0
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Boundary Conditions for PDEs

To uniquely specify a solution to the PDE,
a set of boundary conditions are needed.

Both regular and irregular boundaries are

possible.

O u(x,t) _ Ou(x,t1) 0
Ox* Ot region of

w(0,)=0 /‘ interest

u(l,1)=0

Heat Equation : «

u(x,0) = sin(z x) \J 1
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The Solution Methods for PDEs

Analytic solutions are possible for simple
and special (idealized) cases only.

To make use of the nature of the
equations, different methods are used to
solve different classes of PDEs.

The methods discussed here are based on
the finite difference technique.
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Parabolic Equations

A second order linear PDE (2 - independent variables x, y)
Au,+Bu,+Cu,+D =0,
A, B, and C are functions of x and y

D1s a function of x,y,u,u ,and u,

is parabolicif | B*—4AC =0

19



Parabolic Problems

0T (x,1) _ 0° T(x,1)

Heat Equation : .

Ot Ox
T (x,0) =sin(x x) ice | 0 icte
*  Parabolic problem (B> -4AC =0) X

*  Boundary conditions are needed to uniquely specify a solution.

Minority Carrier Diffusion
Equation : D,,,D, denote
electron, hole diffusion
coefficients

2
OAn, _p 0"An,, _Anp s
Ot "oox? T -
2
OAp, _D 0"Ap, Ap, G

5t b 5x2 Tp Lzo



Finite Difference Methods

Divide the interval x into sub-intervals,
each of width h

Divide the interval t into sub-intervals,
each of width k i

A grid of points is used for
the finite difference solution
T, ; represents T(x;, t;)
Replace the derivatives by
finite-difference formulas
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Finite Difference Methods

Replace the derivatives by finite difference formulas

2
Central Difference Formula for % ]; .
X
0°T (x,1) =t 2T, ;+ Ty _ Iy ;—2T1 ;+T1,,
Ox” (Ax)* h?
. oT
Forward Difference Formula for 8_ :
A

ol (x,t) N Ti,j+1 _Ti,j B Ti,j+1 _Ti,j

ot At k
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Solution of the Heat Equation

» Two solutions to the Parabolic Equation
(Heat Equation) will be presented:

1. Explicit Method:
Simple, Stability Problems.
2. Crank-Nicolson Method:

Involves the solution of a Tridiagonal system
of equations, Stable.
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Explicit Method

oT(x,t) 0°T(x,t)
Ot Ox*
T(x,t+k)=T(x,t) T(x—h,t)=-2T(x,t)+T(x+h,t)
k - h?

T(x,t+k)—T(x,t) = %(T(x—h,r) 2T (x,t)+ T(x +h,1))

Define A = %

T(x,t+k)=AT(x—-h,t)+(A-2A1) T(x,t)+A T(x+h,t)

24



Explicit Method
How Do We Compute?

T(x,t+k)=AT(x—h,t)+(1-24) T(x,t)+ A T(x+ h,t)

means

T

T(x-h,t) T(x,1) T(x+h,1)
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Convergence and Stability

T (x,t+ k) can be computed directly using :
T(x,t+k)=AT(x—h,t)+(1-2A) T(x,t)+A T(x+h,t)

Can be unstable (errors are magnified )

2
To guarantee stability, 1-24)>0 = A< % = k < U

2
This means that k 1s much smaller than /4

—> short time step =" slow" speed..

26



Convergence and Stability of the Solution

Convergence

The solutions converge means that the
solution obtained using the finite difference
method approaches the true solution as the
steps Ax and At approach zero.

Stability:
An algorithm is stable if the errors at each

stage of the computation are not magnified
as the computation progresses.

27



Example 1: Heat Equation

Solve the PDE :

82u(x,t) B ou(x,t)
0% x Ot

u(0,1) =u(l,t) =0

u(x,0) =si(r x)

0

ice ¢ o 'C€

X

Use h=0.25 k=0.25 tofind u(x,t) for x €[0,1],7 €[0,1]

p=X 4

no



Example 1

0% u(x,t) ~ 0 u(x,1) _

> 0
Ox Ot
u(x—h,t)—2u(x,t)+u(x+h,t) Cu(x,t+ k)—u(x,t) 0
h? k -

16(u(x = h,t) = 2u(x,t) + u(x + h,t)) — 4(u(x,t + k) —u(x,1)) =0

u(x,t+k)=4u(x—nh,t)—7 u(x,t)+4 u(x+h,t)

29



Example 1

u(x,t+k)=4u(x—nh,t)="7 u(x,t)+4 u(x+h,t)

t=1.0 00 0 0 0 0 0
t=0.75 06 0 0 0 0 0
t=0.5 L 0 0 0 ' 0
t=0 06 0 0 0

Sin(0.25) Sin(.O. 51) Sin.(0.751'r)

x=0.0 x=0.25 x=0.5 x=0.75 x=1.0



Example 1

1(0.25,0.25) =4 u(0,0) -7 u(0.25,0) +4 u(0.5,0)
=0-"7sin(x/4)+4sin(x/2) =-0.9497

t=1.0 00 0 0 0 0 0
t=0.75 06 0 0 0 0 0
t=0.5 L 0 0 0 ' 0
t=0 06 0 0 0 ¢ 0

Sin(0.251) Sin(0. 511) Sin(0.75TT)

x=0.0 x=0.25 x=0.5 x=0.75 x=1.0



Example 1

1(0.5,0.25) =4 u(0.25,0)—7 u(0.5,0) +4 u(0.75,0)
=4sin(zw/4)—-"Tsin(x/2)+4sin(37/4)=-0.1716

t=1.0 00 0 0 0 0 0
t=0.75 06 0 0 0 0 0
t=0.5 L 0 0 0 ' 0
t=0 06 0 0 0 ¢ 0

Sin(0.251) Sin(0. 511) Sin(0.75TT)

x=0.0 x=0.25 x=0.5 x=0.75 x=1.0



Remarks on Example 1

The obtained results are probably not accurate
because: 1-24A=-7

For accurate results: 1—-24 >0

2 2
One needs to select k < h— = (0.25)

=0.03125

For example, choose k =0.025, then A = i 0.4

n
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Example 1 — cont’d

u(x,t+k)=04 u(x—h,t)+0.2 u(x,t)+0.4 u(x+h,t)

t=0.10 00 0 0 0 0 0
t=0.075 0o 0 0 0 0 0
t=0.05 00 0 0 0 ' 0
t=0.025 0 0 0 0 0 0 0
t=0 O¢ 0 0 0

Sin(0.25) Sin(.O. 51) Sin.(0.751'r)

x=0.0 x=0.25 x=0.5 x=0.75 x=1.0



Example 1 — cont’d

1(0.25,0.025) = 0.4 u(0,0)+ 0.2 u(0.25,0) +0.4 u(0.5,0)
=0+0.2sin(7/4)+0.4sin(7/2) =0.5414

t=0.10 00 0 0 0 0 0
t=0.075 Oe 0 0 0 o O
t=0.05 00 0 0 0 ' 0
t=0.025 O 0 0 0 0 0 O
t=0 Oe 0 0 0

Sin(0.251) Sin(.O. 51r) Sin(0.75)

x=0.0 x=0.25 x=0.5 x=0.75 x=1.0
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Example 1 — cont’d

1(0.5,0.025) = 0.4 u(0.25,0)+ 0.2 u(0.5,0) +0.4 u(0.75,0)
=0.4sin(z/4)+0.2sin(zr/2)+0.4sin(37/4) =0.7657

t=0.10 00 0 0 0 0 0
t=0.075 Oe 0 0 0 ¢ 0
t=0.05 L 0 0 0 ' o
t=0.025 0 0 0 0 0 0 0
t=0 Oe — —0 —0 0 0
Sin(0.251) Sin(0. 51) Sin(0.751T)

x=0.0 x=0.25 x=0.5 x=0.75 x=1.0
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Crank-Nicolson Method

The method involvessolving a Tridiagonal system of linear equations.

The method is stable (No magnification of error).

— We can use larger h, k (compared to the Explicit Method).
Based on the finite difference method

1. Divide the interval x into subintervals of width A
2. Divide the interval f into subintervals of width k&
3. Replace the first and second partial derivatives with their
backward and central difference formulas respectively :
ou(x,t) u(x,t)—u(x,t—k)

or k
0 u(x,t) Cu(x—h,t)=2u(x,t) +u(x+h,t)

ox> h”

37



Crank-Nicolson Method

0% u(x,1) _ O u(x,t)

> becomes
ox ot

Heat Equation :

u(x—nh,t)=2u(x,t)+u(x+h,t)  u(x,t)—u(x,t—k)
h? - k

%(u(x —h,t)—2u(x,t)+u(x+h, t)) =u(x,t)—u(x,t—k)

k k
—?u(x—h,t)+(1+2?) u(x,t)—%u(x+h,t) =u(x,t—k)

38



Crank-Nicolson Method

Define A = L3 then Heat equation becomes :

e
—Aulx—h,t)+(1+20) u(x,t)—A u(x+h,t)=u(x,t—k)

u(x-h,t) u(x,t) u(x+h,t)
0 0 0—

/

u(x,t - k)

39



Crank-Nicolson Method

The equation :
—Au(x=h,t)+A+20) u(x,t) —Au(x+h,t) =u(x,t —k)
can be rewritten as :

—Auy +A+20) u; ;- Ay,

i+1,j = U,

i,j-1

and can be expanded as a system of equations (fix j=1):
—Aug +(A+24) uy; — Au, = uy

—Au +(A+20) uy;, —Auy =u,

—Auy  +(A+24) uy ) —Auy =us,

—A Uy + (1+24) Uy | — A Us | = Uy

40



Crank-Nicolson Method

—Au(x=h,t)+A+240) u(x,t) —Au(x+h,t) =u(x,t —k)

can be expressed as a Tridiagonal system of equations:

(1+21
—A

- A
1+24
- A

-1
1+24
-1

- A
1+24

Uy + A U |

U o

Us g

_M4,O + 2« l/t5’1_

where u, o, u, o, U5 o, and u, , are the initial temperature values

at x = x,+h, x,+2h, x,+3h, and x, +4h

u,,; and u., are the boundary values at x = x, and x, +5h

41



Crank-Nicolson Method

The solution of the tridiagonal system produces :
The temperature values u; j, u, ;,uy,and u, jatt =1, +k
To compute the temperature values at 7 = ¢, + 2k

Solve a second tridiagonal system of equations (j = 2)

(1+24 -2 U o _”1,1 +Auy,
—-A 1424 -4 Uy » U |
A 1424 =4 ||usy | | uy
i —A TH+24 | [y | | Ugy T+ A s,

To COmpute ul,Z’ M2’2, u3,29 and u4,2

Repeat the above step to compute temperature values at 7, + 3k, etc.

42



Example 2

Solve the PDE :

Ou(x,1) ~ Ou(x,t)
0°x Ot

u(0,0) =u(l,t)=0

u(x,0) =sin(zr x)

0

Solve using Crank - Nicolson method
Use h=0.25 k=0.25 tofind u(x,t)for x €[0,1],7 €[0,1]

43



Example 2

Crank-Nicolson Method

0% u(x,t) ~ O u(x,t) _

Ox” ot 0
u(x —h,t)=2u(x,t) +u(x+h,t)  u(x,t)—u(x,t—k)
K - k
16(u(x = h, 1) = 2u(x, 1) + u(x + h,1))— Hu(x,t) —u(x,t —k)) =
Define A= % =4

—du(x—h,t)+9u(x,t)—4u(x+h,t) =u(x,t—k)

— AU Oy = Ay = U

0

44



Example 2

=sin(zz/4)

—duy Uy — AUy = Uy =

U4 Uz 4 U3 4

t,=1.0 Oe ¢ - y 0 0
1,3 2,3 3,3

t;=0.75 Oe 0 0 0 0 0
U2 Uz o U3 2

t,=0.5 00 0 0 0 ' o
Uy 1 Uy 1 Us 1

t,=0.25 00\ 0 /o 0 ' 0

t,=0 0o —4 0 —0 00

Sin(0.251) Sin(0. 51) Sin(0.751T)
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Example 2

Solution of Row 1 at t1=0.25 sec

The Solution of the PDE at 7, = 0.25 sec 1s the solution

of the following tridiagonal system of equations :

9 -4 U | sin(0.257)
-4 9 —-4||u,, |=| sm(0.57)
-4 9 U | sin(0.757)

u, | [0.21151°
=|u,, |=]0.29912
wy, | 1021151




Example 2:

Second Row at t2=0.5 sec

Ui 4 Uz 4 Us 4

t,=1.0 O 0 0 0 0 O
Ui 3 Uz 3 U3 3

t;=0.75 Oe 0 0 0 0 0
Uiz Uz o Us 2

t,=0.5 00 0 0 0 ' o
\ Ut,/sz Us, 1

t1=0.25 0 0 0 0 0 0 0

t,=0 06 ¢ ¢ 0 0 0

Sin(0.251) Sin(0. 51) Sin(0.751T)
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Example 2

Solution of Row 2 at t2=0.5 sec

The Solution of the PDE at ¢, = 0.5 sec 1s the solution

of the following tridiagonal system of equations:

9 —4 i, | |u, | [0.21151
_4 9 | l/t3,2 u31 _0.21151_

u, | [0.063267
uy, | | 0.063267
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Example 2

Solution of Row 3 at t3=0.75 sec

The Solution of the PDE at t; = 0.75 sec 1s the solution

of the following tridiagonal system of equations :

9 —4 w5 | [w,] [0.063267
-4 9 —4\luyz3|=|uy, |=]0.089473
- 4 9 | l/t3,3_ l/t3,2 _0.063267_

u 5| [0.018924°
= u, , |=|0.026763
| 0.018924




Example 2

Solution of Row 4 at t4=1 sec

The Solution of the PDE at 7, = 1sec is the solution

of the following tridiagonal system of equations:

9 -4 Uy 4 U 3 10.018924 |
-4 9 —4lluy, |=|u3|=10.026763
-4 9 || uzy uy53 | | 0.018924

u, | [0.0056606
= u, , | =| 0.0080053
s, || 0.0056606




Remarks

The Explicit Method:

*One needs to select small k to ensure stability.
«Computation per point is very simple but many
points are needed.

Cranks Nicolson:

* Requires the solution of a Tridiagonal system.

« Stable (Larger k can be used).
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Elliptic Equations

A second order linear PDE (2 - independent variables x, y)
Au,+Bu,+Cu,+D =0,
A, B, and C are functions of x and y

Disa function of x, y, u,u,,and u,

is Ellipticif | B*—4AC <0
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Laplace Equation

Laplace equation appears in several
engineering problems such as:

m Studying the steady state distribution of heat in a
body.

m Studying the steady state distribution of electrical
charge in a body.

0 )
axZ T 8_))2 i

T :steady state temperature at point(X,y)

0

f(x,vy): heatsource(or heatsink)

53



Laplace Equation

o Ty y) o> T(x,y)
Ox” Oy’

A=-ILB=0C =1

ool i T

=f(xy)

Temperature is a function of the position (x and y)
When no heat source is available >f(x,y)=0
In Electrostatics: Poisson’s & Laplace’s EQ

2 2 2 P
8‘2/ av+a —\Vz’V:iAV——’O"
ox>  oy> 07 g

54

Laplacian Operator




Solution Technique

A grid is used to divide the region of
interest.

Since the PDE is satisfied at each point in
the area, it must be satisfied at each point
of the grid.

A finite difference approximation is
obtained at each grid point.

0’ T(x,y) T.,;=20,;+T.,; & T(xy) T,.-2T;+T,

i,j—1
ox* (A o (ay)
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Solution Technique

0’ T(x,y) . Ti+1,j _2Ti,j +Ti—LJ

o
82 T(X,y) _T;',j+1_2T +7-;]1
Oy’ (Ay)
2 2
0 T()Zc,y) 0 T()zc,y) _0
Ox oy

1s approximated by:
T, =21 +T_ . T ., -2T +T,

&y (o)
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Solution Technique

7;+1,j_2Ti,j+7;—1,j I Tz _2T "'sz 1 —0

(Ax) IS;
(Laplacian Difference Equation)
Assume:. Ax=Ay=nh
=1, +1,_ +1

l ]+1

+ T

.]_1 laj



Solution Technique

.Ti,j+1
Ti—l,j Tz] Ti+1,j
@ @ @
!
L, +T_ +T ., +T, ., —4I, . =0




Example

It is required to determine the steady
state temperature at all points of a heated
sheet of metal. The edges of the sheet are
kept at a constant temperature: 100, 50,

0, and /5 degrees.

/75

The sheet is divided
to 5X5 grids.

50
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® Known

@® To be determined

Example

T,,=100  T,,=100

60



® Known

@® To be determined

First Equation

T, =100

To,3 +Tl,4 +Tl,2 +T2,3 _4Tl,3 =0
75+100+T7,,+T,,—41,, =0

61



® Known

@® To be determined

Another Equation

T,,=100 T,,=100  T,, =100
A ,

- S
T13 T
, LS T
O ,‘:}23 o2

L+ 4 +133+15, =415 =0
71’3 + 100 + T3,3 + T2’2 — 4T2,3 — O

62



Solution

The Rest of the Equations

(4 -1 0
-1 4
0 -1 4
-1 0 0

-1 0

—1

—1

—1
0 -1
0 O
4 -1
-1 4
0 -1
-1 0
-1

—1

0
4
—1
0

-1
0
-1

—1

-1
0
-1

4 )

(75

50
75

50
175
100

150,
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Hyperbolic PDE

A continuously-vibrating violin or guitar
string.

Acoustic waves inside pipe or horn.
Electromagnetic wave in space.

Voltage across transmission Line.

Example - wave equation | /\/
0’u , 0°uU E
=d

ot* Ox”




Hyperbolic Problems

0 2
Ot Ox

u(0,7) =u(l,t) = 0 (Boundary conditions)

Wave Equation :

u(x,0) = f(x) (Giveninitial displacement)
u, (x,0) = g(x) (Given initial velocity)
* Hyperbolicproblem (B°—-4AC <0)

*  Boundary conditions are needed to uniquely specify a solution.

*  Note that u, = c’u__can be reduced tou, =u__by a linear

transformation of x and r.
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Hyperbolic Problems

Vibrating string

WaveEquation :

0<x<L1Lr>20

u(x,0) = f(x)

u, (x,0) = g(x)

u(0,1) =u(l,t)=0

ot*

0°u(x,t) B 0 u(x,t)

Ox”

End

/\/,

End

* Hyperbolic problem (B> —4AC > 0)

66




Finite Difference Methods (as before)

Divide the interval x into sub-intervals,
each of width h

Divide the interval t into sub-intervals,
each of width k i

A grid of points is used for
the finite difference solution
u; ; represents u(x;, t;)
Replace the derivatives by
finite-difference formulas
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Finite Difference Methods

Replace the derivatives by finite difference formulas

2

Central Difference Formula for a@ L; .
X

@zu(xa r) - Uiy, — 2ui,j TUL _ Uy, — 2ui,j TUL

Ox” (Ax )2 h?
: o0’u

Central Difference Formula for F .

A

2 _ —_
O'u(x,t) Uiy =2U; 5+ Uy Uy =20+ u

ot’ (At)* k*

i,j+1




Finite Difference Methods (Cont.)

Thus

U . —2u; ;+u U, ;—2u; ;+u

i,] Lj+l i i+1,j
2 o 2
k h
. 2 2 .
Choosing r* =k~ /h” =1 yields
Ui g = Uiy TU  — U

Furthermore, from u, (x,0) = g(x)
1
—\u.,—u. )J=g.=>u. ,=u., —2kg.
2k( i1 1,—1) gl i,—1 i1 gl
where g, = g(ih).Sinceu, , =u, |, +u,, ,—u

1
U, = 5 (ui—l,O TU 0 )"‘ kg,

i,—1°



Example: f(x)=sinmx, g(x)=0, h=k=0.2

. . 1
Initial Condition :u; , = 5 (u 10 T Uit o ), then

u,, = (ugy +1,,)/2=0.951057/2 = 0.475528
y, = (1, +1usy )/ 2=1.538842/2=0.769421

Uy, = U, Uy = U, DY SYmmetry.

u. ,.+U,

i,j+1 — i—1,j i+1,j —U

Using u il
along with u, , =0and j =1yields
Uy, =Uy +Uy — Uy, =0.769421—-0.587785=0.181636

Uy, =1, +ity, — U,y =0.475528+0.769421—0.951057 = 0.293892

and u, =u,,,u,, =u,, 70



Solution

1 x=20 x=02 x=04 x = 0.6 x = 0.8 x =1 i
0.0 0 0.588 0.951 0.951 0.588 0
0.2 0 0.476 0.769 0.769 0.476 0
0.4 0 0.182 0.294 0.294 0.182 0
0.6 0 —0.182 —~0.294 —0.294 —0.182 0
0.8 0 —0.476 —0.769 —0.769 —0.476 0
1.0 0 —0.588 —0.951 —0.951 —().588 0

Exact solution : u(x,t) = sin 7zx cos 7




Helmholtz equation

Wave equation

Vu(x,y,z,t) =

1 0°u(x,y,z,1)

c

2

0°t

, X,y,z€D

Fourier
transformation

(V*+k*)u(x,y,2)=0, xeD ©

Helmholtz equation
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Solution to Helmholtz Equation

Finite Difference Method (Similar to
Laplace’s equation)

Finite Element Method (FEM)
Boundary Element Method (BEM)
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