
BOOLEAN ALGEBRA

Introduction

� 1854: Logical algebra was published 

by George Boole� known today as 

“Boolean Algebra”

� It’s a convenient way and systematic 

way of expressing and analyzing the way of expressing and analyzing the 

operation of logic circuits.

� 1938: Claude Shannon was the first 

to apply Boole’s work to the analysis 

and design of logic circuits.



Boolean Algebra: A set of elements B with two 
operations. + (OR, ∪, ˅ ) 

* (AND, ∩, ˄ ),
satisfying the following 4 laws. 
P1. Commutative Laws: 

a+b = b+a; a*b = b*a, 
P2. Distributive Laws: 

DEFINITION OF BOOLEAN ALGEBRA
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P2. Distributive Laws: 
a+(b*c) = (a+b)*(a+c); a*(b+c)= (a*b)+(a*c), 

P3. Identity Elements: Set B has two distinct elements 
denoted as 0 and 1, such that a+0 = a; a*1 = a, 

P4. Complement Laws: 
a+a’ = 1; a*a’ = 0. 



BOOLEAN OPERATIONS & 

EXPRESSIONS

� Variable – a symbol used to represent a logical 

quantity.

� Complement – the inverse of a variable and is 

indicated by a bar over the variable or the prime

symbol.symbol.

� Literal – a variable, the complement of a variable 

and the constants (0,1).



BOOLEAN ALGEBRA VS SET OPERATIONS

� Identities

� 0 = {} 

� 1 = Universe of the 

set 

� A+0 = A 

� A*1 = A 

Operations

Multiplication ↔ Intersection

Addition ↔ Union

Complement (Negation) ↔

Complement

Example: U = {x | x is a positive integer}, A={x | x is odd}, 
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Example: U = {x | x is a positive integer}, A={x | x is odd}, 

B={x | x is even}, C={x | x is a prime number}

D = {x | x is even prime number} ↔ d = bc

E = {x | x is odd or x is prime} ↔ e = a + c

A∪ B = U ↔ a + b = 1

A ∩ B = φ (empty set) ↔ ab = 0

Ac = B ↔ a' = b



VENN DIAGRAM REPRESENTATION

x x’ xy
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y+z x x(y+z)

xy+z xz xy'



BOOLEAN ADDITION

� Boolean addition is equivalent to the OR operation

0+0 = 0 0+1 = 1 1+0 = 1 1+1 = 1

� A sum term is produced by an OR operation with 
no AND ops involved.
� i.e.

� A sum term is equal to 1 when one or more of the literals 
in the term are 1.

� A sum term is equal to 0 only if each of the literals is 0. 

DCBACBABABA +++++++ ,,,



BOOLEANMULTIPLICATION

� Boolean multiplication is equivalent to the 
AND operation

0·0 = 0 0·1 = 0 1·0 = 0 1·1 = 1

� A product term is produced by an AND 
operation with no OR ops involved.
� i.e.

� A product term is equal to 1 only if each of the 
literals in the term is 1.

� A product term is equal to 0 when one or more of the 
literals are 0. 

DBCACABBAAB ,,,



TRUTH TABLES

xy = x AND y = x * y x + y = x OR y x bar = NOT xxy = x AND y = x * y x + y = x OR y x bar = NOT x

AND is true only if OR is true if either NOT inverts the bit

both inputs are true inputs are true will denote x bar as x' (x prime)

NOR is NOT of OR NAND is NOT of AND XOR is true if both inputs

differ
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BOOLEAN EXPRESSIONS

� We form Boolean expressions out of Boolean 
operations on Boolean variables or Boolean 
values
� So, like algebraic expressions, we can create more 

complex Boolean expressions as we might need

� Consider the expression:� Consider the expression:
� F = x + y'z

� What is its truth table?

Notice that it is easier to derive the

truth table for the entire expression

by breaking it into subexpressions

So first we determine y'

next, y' z

finally, x + y'z
9



BASIC BOOLEAN IDENTITIES

� As with algebra, there will be Boolean operations 
that we will want to simplify
� We apply the following Boolean identities to help

� For instance, in algebra, x = y (z + 0) + (z * 0) can be simplified 
to just x = yz
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COMMUTATIVE LAWS

� The commutative law of addition for two variables is 

written as: A+B = B+A

A

B
A+B

B

A
B+A≡

� The commutative law of multiplication for two 

variables is written as: AB = BA

B A

A

B
AB

B

A
BA≡



ASSOCIATIVE LAWS

� The associative law of addition for 3 variables is 

written as: A+(B+C) = (A+B)+C

� The associative law of multiplication for 3 

variables is written as: A(BC) = (AB)C

A

B
A+(B+C)

A

B≡
A+B

B

C

B
(A+B)+C

C

A

B
A(BC)

C

A

B
(AB)C

C

≡

≡

B+C

BC

AB



DISTRIBUTIVE LAWS

� The distributive law is written for 3 variables 

as follows:  A(B+C) = AB + AC

B A ABB

C

A

B+C

≡

A

B

C

A
XX

AB

AC

X=A(B+C) X=AB+AC



DEMORGAN’S THEOREMS
� DeMorgan’s theorems provide mathematical 

verification of:

� the equivalency of the NAND and negative-OR gates

� the equivalency of the NOR and negative-AND gates.

� The complement of two 
or more ANDed variables 
is equivalent to the OR 
of the complements of 

YXYX +=•

NAND Negative-OR

of the complements of 
the individual variables.

� The complement of two 
or more ORed variables 
is equivalent to the AND 
of the complements of 
the individual variables. 

YXYX •=+

Negative-ANDNOR

In general, ∏∑∑∏ ==
k

k

k

k

k

k

k

k xxxx ;



SOME EXAMPLES

Example:  use algebraic simplification rules to reduce x'yz+x'yz'+xz

x'yz + x'yz' + xz = x'y(z+z')+xz (distributive law) =  

x'y(1)+xz (inverse law) = x'y+xz (identity law)

Example:  xy+x'z+yz = xy+x'z+yz*1 (identity) = xy+x'z+yz*(x+x')

(inverse) = xy+x'z+xyz+x'yz (distributive) = xy(1+z)+x'z(y+1) 

(distributive) = xy(1)+x'z(1) (null) = xy*1+x'z*1 (absorption)

= xy+x'z (identity)

Example:  (x+y)(x'+y) = x'(x+y)+y(x+y) (distributive) = x'x+x'y+xy+yy (distributive)

DeMorgan's Law states that

(xy) ' = x'+y'

Boolean expressions are equal

if their truth tables give the

same values – we see that here

Example:  (x+y)(x'+y) = x'(x+y)+y(x+y) (distributive) = x'x+x'y+xy+yy (distributive)

= 0+x'y+xy+yy (inverse) = x'y+xy+yy (identity) = y(x'+x+y) (distributive)

= y(1+y) (inverse) = y(1) (identity) = y (idempotent)

Here we have an example specifically to see how DeMorgan's Law works
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FUNCTIONMINIMIZATION USING BOOLEAN

ALGEBRA

� Examples:

(a) a + ab = a(1+b)=a

(b) a(a + b) = a.a +ab=a+ab=a(1+b)=a.

(c) a + a'b = (a + a')(a + b)=1(a + b) =a+b

(d) a(a' + b) = a. a' +ab=0+ab=ab

(e) ab + ab' = a(b+b') = a.1=a(e) ab + ab' = a(b+b') = a.1=a

(f) (a + b)(a + b') = a.a +ab' +ab+bb'

=   a  + ab' +ab + 0

=   a  + a(b' +b) + 0

=   a  + a1 + 0

=   a  + a = a

(g) (a + bc)' = a'(bc)' = a'(b' + c') = a'b' + a'c'



DEMORGAN’S THEOREMS (EXERCISES)

� Apply DeMorgan’s theorems to the 

expressions:

)(

DEFABC

DCBA

+

++

ZYX

ZYX

++

••

)( FEDCBA

EFDCBA

+++

++

ZYXW

ZYX

•••

++



DUALITY THEOREM (DE MORGAN’S DUALITY)

� The Principle of Duality 

from Zvi Kohavi, Switching and Finite Automata Theory

“We observe that all the preceding properties are grouped in pairs. 

Within each pair one statement can be obtained from the other by 

interchanging the OR and AND operations and replacing the constants 

0 and 1 by 1 and 0 respectively. Any two statements or theorems which 

have this property are called dual, and this quality of duality which 

characterizes switching algebra is known as the principle of duality. It characterizes switching algebra is known as the principle of duality. It 

stems from the symmetry of the postulates and definitions of switching 

algebra with respect to the two operations and the two constants. The 

implication of the concept of duality is that it is necessary to prove only 

one of each pair of statements, and its dual is henceforth proved.”

� Recall the De Morgan’s Theorems:

(xy)’ = x’ + y’ ↔ (x+y)’=x’y’

� Consider basic Boolean identities in slide 11.



DUAL OF BOOLEAN EXPRESSIONS
(a) f = (a + c')b + 0

Dual of f = (ac' + b)⋅1 = ac' + b

(b) g = xy+(w+z)'

Dual of g = (x + y)(wz)' = (x + y)(w' + z')

(c) h = ab + bc + ac

Dual of h = (a + b)(b + c)(a + c) = (b + ac)(a + c) = ab + bc
+ ac -> h is self-dual.

Application examples of Duality Theorem:

(a) (x+y)(x'+y) = y ↔ xy + x'y = y

(b) (x+y)(x+y+z')+y' = (x+y)(1+z')+y' = x+y+y' = 1

↔ (xy + xyz')y' = xyy' = 0

(c) abc + abc' = ab↔ (a + b + c)(a + b + c') = a+b

(d) a'b + b'c + c'a = ab' + bc' + ca' (Prove it!)

↔ (a' +b)(b' +c)(c' +a) = (a+b')(b+c')(c+a')
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CONSENSUS THEOREM

� Consensus theorem states:

XY + X’Z + YZ = XY + X’Z

� The YZ term is called the consensus term and is

redundant. The consensus term is formed from a PAIR

OF TERMS in which a variable (X) and its complement

(X’) are present; the consensus term is formed by

multiplying the two terms and leaving out the selectedmultiplying the two terms and leaving out the selected

variable and its complement.

� The consensus of XY, X’Z is YZ .

� Intuitively, if YZ is true, then both Y and Z are true, 
and therefore either XY is true or X’Z is true.

20



CONSENSUS THEOREM (CONT’D)

Proof

XY + X’Z + YZ = XY + X’Z + (X + X’)YZ

= XY + X’Z + XYZ + X’YZ

= (XY + XYZ) + (X’Z + X’YZ)

= XY (1 + Z) + X’Z (1 + Y)

= XY + X’Z

Exercise : Use the truth table to prove it.� Exercise : Use the truth table to prove it.

� The consensus operator: ¢

� In general can write as: 

at1 ¢ a’t2 = t1t2

21



DUAL OF CONSENSUS THEOREM

(X+Y) (X’ + Z) (Y + Z) = (X + Y) (X’ + Z)

The consensus of (X+Y)(X’+Z) is (Y + Z) .

This can be derived using the duality theorem.

� Application Example: short cut for multiplication

(X + Y) (X’ + Z) = XZ + X’Y

Only works when you have a variable (X) and its 

complement (X’). complement (X’). 

To PROVE this, lets do the distribution the long way.

(X + Y)(X’ + Z) = X X’ + XZ + X’Y + YZ = XZ + X’Y

22

Redundant by

consensus theorem
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BOOLEAN ANALYSIS OF LOGIC CIRCUITS

� Boolean algebra provides a concise way to express 

the operation of a logic circuit formed by a 

combination of logic gates so that the output can be 

determined for various combinations of input values.

� To derive the Boolean expression for a given logic 

circuit, begin at the left-most inputs and work 

toward the final output, writing the expression for toward the final output, writing the expression for 

each gate.

C

D

B

A

CD

B+CD

A(B+CD)

Boolean expression



CONSTRUCTING A TRUTH TABLE FOR

A LOGIC CIRCUIT

� Putting the results in 

truth table format

INPUTSINPUTSINPUTSINPUTSINPUTSINPUTSINPUTSINPUTS OUTPUTOUTPUTOUTPUTOUTPUTOUTPUTOUTPUTOUTPUTOUTPUT

AAAAAAAA BBBBBBBB CCCCCCCC DDDDDDDD A(B+CD)A(B+CD)A(B+CD)A(B+CD)A(B+CD)A(B+CD)A(B+CD)A(B+CD)

00000000 00000000 00000000 00000000

00000000 00000000 00000000 11111111

00000000 00000000 11111111 00000000

00000000 00000000 11111111 11111111

00000000 11111111 00000000 00000000

INPUTSINPUTSINPUTSINPUTSINPUTSINPUTSINPUTSINPUTS OUTPUTOUTPUTOUTPUTOUTPUTOUTPUTOUTPUTOUTPUTOUTPUT

AAAAAAAA BBBBBBBB CCCCCCCC DDDDDDDD A(B+CD)A(B+CD)A(B+CD)A(B+CD)A(B+CD)A(B+CD)A(B+CD)A(B+CD)

00000000 00000000 00000000 00000000

00000000 00000000 00000000 11111111

00000000 00000000 11111111 00000000

00000000 00000000 11111111 11111111

00000000 11111111 00000000 00000000
When A=1 and 

A(B+CD)=1

INPUTSINPUTSINPUTSINPUTSINPUTSINPUTSINPUTSINPUTS OUTPUTOUTPUTOUTPUTOUTPUTOUTPUTOUTPUTOUTPUTOUTPUT

AAAAAAAA BBBBBBBB CCCCCCCC DDDDDDDD A(B+CD)A(B+CD)A(B+CD)A(B+CD)A(B+CD)A(B+CD)A(B+CD)A(B+CD)

00000000 00000000 00000000 00000000

00000000 00000000 00000000 11111111

00000000 00000000 11111111 00000000

00000000 00000000 11111111 11111111

00000000 11111111 00000000 00000000

INPUTSINPUTSINPUTSINPUTSINPUTSINPUTSINPUTSINPUTS OUTPUTOUTPUTOUTPUTOUTPUTOUTPUTOUTPUTOUTPUTOUTPUT

AAAAAAAA BBBBBBBB CCCCCCCC DDDDDDDD A(B+CD)A(B+CD)A(B+CD)A(B+CD)A(B+CD)A(B+CD)A(B+CD)A(B+CD)

00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 11111111 00000000

00000000 00000000 11111111 00000000 00000000

00000000 00000000 11111111 11111111 00000000

00000000 11111111 00000000 00000000 0000000000000000 11111111 00000000 00000000

00000000 11111111 00000000 11111111

00000000 11111111 11111111 00000000

00000000 11111111 11111111 11111111

11111111 00000000 00000000 00000000

11111111 00000000 00000000 11111111

11111111 00000000 11111111 00000000

11111111 00000000 11111111 11111111

11111111 11111111 00000000 00000000

11111111 11111111 00000000 11111111

11111111 11111111 11111111 00000000

11111111 11111111 11111111 11111111

00000000 11111111 00000000 00000000

00000000 11111111 00000000 11111111

00000000 11111111 11111111 00000000

00000000 11111111 11111111 11111111

11111111 00000000 00000000 00000000

11111111 00000000 00000000 11111111

11111111 00000000 11111111 00000000

11111111 00000000 11111111 11111111

11111111 11111111 00000000 00000000 11111111

11111111 11111111 00000000 11111111 11111111

11111111 11111111 11111111 00000000 11111111

11111111 11111111 11111111 11111111 11111111

When A=1 and 

B=1 regardless 

of  the values 

of  C and D
When A=1 and C=1 

and D=1 regardless of  

the value of  B

00000000 11111111 00000000 00000000

00000000 11111111 00000000 11111111

00000000 11111111 11111111 00000000

00000000 11111111 11111111 11111111

11111111 00000000 00000000 00000000

11111111 00000000 00000000 11111111

11111111 00000000 11111111 00000000

11111111 00000000 11111111 11111111 11111111

11111111 11111111 00000000 00000000 11111111

11111111 11111111 00000000 11111111 11111111

11111111 11111111 11111111 00000000 11111111

11111111 11111111 11111111 11111111 11111111

00000000 11111111 00000000 00000000 00000000

00000000 11111111 00000000 11111111 00000000

00000000 11111111 11111111 00000000 00000000

00000000 11111111 11111111 11111111 00000000

11111111 00000000 00000000 00000000 00000000

11111111 00000000 00000000 11111111 00000000

11111111 00000000 11111111 00000000 00000000

11111111 00000000 11111111 11111111 11111111

11111111 11111111 00000000 00000000 11111111

11111111 11111111 00000000 11111111 11111111

11111111 11111111 11111111 00000000 11111111

11111111 11111111 11111111 11111111 11111111



SOME CIRCUITS

AND and OR gates can have more than 2

inputs, as seen here

Notice for y', we can either use a NOT gate or

simply specify that the value is y'

Here is the truth table for this last circuit 25



USING ONLY NAND

� NAND (and NOR) have unique properties 
different from the other Boolean operations
� This allows us to use one or more NAND gates 

(or one or more NOR gates) and create gates that 
can compute AND, OR and NOT
� See the examples below

26



NAND CHIP
Early integrated circuits

were several gates on a

single chip, you would

connect this chip to other

chips by adding wires

between the pins

To do (AB)'(CD)'

You would connect A andYou would connect A and

B to pins 7 and 6, 

C and D to 4 and 3, 

and send 5 and 2 to 

an AND chip

This is a NAND chip
27



COMBINATIONAL CIRCUITS

� We will combine logic gates 
together for calculations

� Example: (A*B)' and (C*D)' with an 
OR gate – shown to the right

� The resulting circuit is a combinational circuit

� Electrical current flows from one gate to the next� Electrical current flows from one gate to the next

� By combining gates, we can compute a Boolean expression

� What we want to do is:

� Derive the Boolean expression for some binary calculation (e.g., 

addition)

� Then build the circuit using the various logic gates

� This is how we will build the digital circuits that make up 

the ALU (arithmetic-logic unit) and other parts of the 

computer

28



AN EXAMPLE:  HALF ADDER

� There are 4 possibilities 
when adding 2 bits together:
� 0 + 0 0 + 1 1 + 0 1 + 1

� In the first case, we have a sum of 
0 and a carry of 0

� In the second and third cases, we 
have a sum of 1 and a carry of 0

� In the last case, we have a sum of 
0 and a carry of 1
These patterns are demonstrated The truth table for Sum and Carry� These patterns are demonstrated 
in the truth table above to the 
right

� Notice that sum computes the 
same as XOR and carry 
computes the same as AND

� We build an Adder using just 
one XOR and one AND gate

The truth table for Sum and Carry

and a circuit to compute these

29



FULL ADDER

� The half adder really only does half the work 

� adds 2 bits, but only 2 bits

� If we want to add 2 n-bit 
numbers, we need to also 
include the carry in from the 
previous half adder

� So, our circuit becomes more � So, our circuit becomes more 
complicated

� In adding 3 bits (one bit from x, 
one bit from y, and the carry in 
from the previous addition), we 
have 8 possibilities

� The sum will either be 0 or 1 and 
the carry out will either be 0 or 1

� The truth table is given to the 
right

30



BUILDING A FULL ADDER CIRCUIT

� The sum is 1 only if one of x, y 
and carry in are 1, or if all three 
are 1, the sum is 0 otherwise

� The carry out is 1 if two or three 
of x, y and carry in were 1, 0 
otherwise
� The circuit to the right captures this 

by using 2 XOR gates for Sum and 2 
AND gates and an OR gate for AND gates and an OR gate for 
Carry Out

� We combine several full adders 
together to build an Adder, as 
shown below:

A 16-bit adder, comprised of 16 Full Adders connected so that each 

full adder's carry out becomes the next full adder's carry in

Called a “ripple” adder because

carrys ripple upward

31



COMPLEMENTOR

� Let's design another circuit to take a two's 

complement number and negate it (complement it)

� Change a positive number to a negative number

� Change a negative number to a positive number

� Recall to do this, you flip 

all of the bits and add 1all of the bits and add 1

� To flip the bits, we pass 

each bit through a NOT 

gate

� To add one, send it to a full 

adder with the other 

number being 000…001

32



ADDER/SUBTRACTER

� Recall that
� two's complement 

subtraction can be  
performed by 
negating the second 
number and adding 
it to the first

We revise our adder as � We revise our adder as 
shown to the right

� It can now perform 
addition (as normal)

� Or subtraction by 
sending the second 
number through the 
complementor

The switch (SW) is a multiplexer,

covered in a few slides 33



COMPARATOR

� have covered + and -, how about <, >, =
� To compare A to B, we use a simple tactic

� Compute A – B and look at the result
� if the result is -, then A < B
� if the result is 0, then A = B
� if the result is +, then A > B
� if the result is not 0, then A != B

� how do we determine if the result is -?  look at the sign bit, if the 
sign bit is 1, then the result is negative and A < B

� how do we determine if the result is 0?  are all bits of the result 0?  � how do we determine if the result is 0?  are all bits of the result 0?  
if so, then the result is 0 and A = B
� we will build a zero tester which is simply going to NOR all of the bits 

together

� how do we determine if the result is +?  if the result of A – B is not 
negative and not 0, it must be positive, so we negate the results of 
the first two and pass them through an AND gate

� The comparator circuit is shown above (notice that the 
circuit outputs 3 values, only 1 of which will be a 1, the 
others must be 0)
� NOTE:  to compute !=, we can simply negate the zero output

34



MULTIPLIER

� The circuit below is a multiplication circuit
� Given two values, the multiplicand and the multiplier, both stored 

in temporary registers

� The addition takes place by checking the Q0 bit and deciding 
whether to add the multiplicand to the register A or not, followed 
by right shifting the carry bit, A and Q together

� shift/add control 
logic logic 
� set counter = n

� compare Q0 to 1
� if equal, signal 

adder to add

� signal the shifter 
to shift

� decrement 
counter

� repeat until 
counter = 0

35



4-BIT SHIFTER

Shift I3I2I1I0

to the left or

the right to 

become O3O2O1O0

based on S

36



PARITY FUNCTIONS

� The table on 
the left shows 
the Boolean 
values to 
indicate what 
parity value a 
3 bit input 
should have

� The table on 
the right 
indicates indicates 
whether an 
error should be 
signaled upon 
receiving 3 
inputs and the 
parity info

What will this circuit look like?

Notice that parity = Not(sum)

The error detection

circuit is more complex

and will require that we

either build it as a sum 

of products or use a 

simplification method 37



A DECODER

� The Decoder is a circuit that takes a binary pattern 
and translates it into a single output
� This is often used to convert a binary value into a decimal 

value
� For an n-bit input, there are 2n outputs
� Below is a 2 input – 4 output decoder

� if input = 01, the second line (x’y) on the right has current
� the line 01 would be considered line 1, where we start counting at 0

38



A MULTIPLEXER

� Multiplexer (abbreviated as MUX) is used to select 
from a group of inputs which one to pass on as output
� Here, 1 of 4 single-bit inputs is passed on using a 2-bit 

selector (00 for input 0, 01 for input 1,10 for input 2, 11 for 
input 3)
� While this circuit is more complex than previous ones, this is 

simplified for a MUX – imagine what it would look like if we 
wanted to pass on 16 bits from 1 of 4 inputs

A related circuit is the demultiplexer (DEMUX) – it receives 1 input and a select and 

passes the input onto one of several outputs
39



A SIMPLE 2-BIT ALU

Putting all these ideas together

We have a 2-bit ALU

Given 2 values,

A and B, each

of which are 2

bits (A0, A1,

B0, B1) and

a selection froma selection from

the control unit (f0, f1)

This circuit computes

A+B (if f0 f1 = 00)

NOT A (if f0 f1 = 01)

A OR B (if f0 f1 = 10)

A AND B (if f0 f1 = 11)

And passes the result out as C0 C1

along with overflow if the addition 

caused an overflow 40


