PROBLEMS

Answers to problems marked by an asterisk are given at the back of the book.

- **3.1** Consider the circuit shown in Figure P3.1.
 - (a) Show the truth table for the logic function f.

(b) If each gate in the circuit is implemented as a CMOS gate, how many transistors are needed?

Figure P3.1 A sum-of-products CMOS circuit.

- **3.2** (a) Show that the circuit in Figure P3.2 is functionally equivalent to the circuit in Figure P3.1.
 - (b) How many transistors are needed to build this CMOS circuit?

Figure P3.2 A CMOS circuit built with multiplexers.

3.3 (a) Show that the circuit in Figure P3.3 is functionally equivalent to the circuit in Figure P3.2.

(b) How many transistors are needed to build this CMOS circuit if each XOR gate is implemented using the circuit in Figure 3.61*d*?

153

Figure P3.3 Circuit for problem 3.3.

- *3.4 In Section 3.8.8 we said that a six-input CMOS AND gate can be constructed using two three-input AND gates and a two-input AND gate. This approach requires 22 transistors. Show how you can use only CMOS NAND and NOR gates to build the six-input AND gate, and calculate the number of transistors needed. (Hint: use DeMorgan's theorem.)
- **3.5** Repeat problem 3.4 for an eight-input CMOS OR gate.

3.6 (a) Give the truth table for the CMOS circuit in Figure P3.4.
(b) Derive a canonical sum-of-products expression for the truth table from part (a). How many transistors are needed to build a circuit representing the canonical form if only AND, OR, and NOT gates are used?

Figure P3.4 A three-input CMOS circuit.

3.7 (a) Give the truth table for the CMOS circuit in Figure P3.5.(b) Derive the simplest sum-of-products expression for the truth table in part (a). How many transistors are needed to build the sum-of-products circuit using CMOS AND, OR, and NOT gates?

***3.8** Figure P3.6 shows half of a CMOS circuit. Derive the other half that contains the PMOS transistors.

Figure P3.6 The PDN in a CMOS circuit.

٩,

CHAPTER 3 • IMPLEMENTATION TECHNOLOGY

3.9 Figure P3.7 shows half of a CMOS circuit. Derive the other half that contains the NMOS transistors.

Figure P3.7 The PUN in a CMOS circuit.

- **3.10** Derive a CMOS complex gate for the logic function $f(x_1, x_2, x_3, x_4) = \sum m(0, 1, 2, 4, 5, 6, 8, 9, 10).$
- **3.11** Derive a CMOS complex gate for the logic function $f(x_1, x_2, x_3, x_4) = \sum m(0, 1, 2, 4, 6, 8, 10, 12, 14).$
- **3.12** Derive a CMOS complex gate for the logic function f = xy + xz. Use as few transistors as possible (Hint: consider \overline{f}).
- **3.13** Derive a CMOS complex gate for the logic function f = xy + xz + yz. Use as few transistors as possible (Hint: consider \overline{f}).
- **3.14** For an NMOS transistor, assume that $k'_n = 20 \ \mu \text{A/V}^2$, $W/L = 2.5 \ \mu \text{m}/0.5 \ \mu \text{m}$, $V_{GS} = 5 \ \text{V}$, and $V_T = 1 \ \text{V}$. Calculate (a) I_D when $V_{DS} = 5 \ \text{V}$ (b) I_D when $V_{DS} = 0.2 \ \text{V}$
- **3.15** For a PMOS transistor, assume that $k'_p = 10 \ \mu \text{A/V}^2$, $W/L = 2.5 \ \mu \text{m}/0.5 \ \mu \text{m}$, $V_{GS} = -5 \text{ V}$, and $V_T = -1 \text{ V}$. Calculate (a) I_D when $V_{DS} = -5 \text{ V}$
 - (b) I_D when $V_{DS} = -0.2$ V
- **3.16** For an NMOS transistor, assume that $k'_n = 20 \ \mu \text{A/V}^2$, $W/L = 5.0 \ \mu \text{m}/0.5 \ \mu \text{m}$, $V_{GS} = 5 \ \text{V}$, and $V_T = 1 \ \text{V}$. For small V_{DS} , calculate R_{DS} .
- **3.17** For an NMOS transistor, assume that $k'_n = 40 \ \mu \text{A/V}^2$, $W/L = 3.5 \ \mu \text{m}/0.35 \ \mu \text{m}$, $V_{GS} = 3.3 \text{ V}$, and $V_T = 0.66 \text{ V}$. For small V_{DS} , calculate R_{DS} .

PROBLEMS

- **3.18** For a PMOS transistor, assume that $k'_p = 10 \ \mu \text{A/V}^2$, $W/L = 5.0 \ \mu \text{m}/0.5 \ \mu \text{m}$, $V_{GS} = -5 \text{ V}$, and $V_T = -1 \text{ V}$. For $V_{DS} = -4.8 \text{ V}$, calculate R_{DS} .
- **3.19** For a PMOS transistor, assume that $k'_p = 16 \ \mu A/V^2$, $W/L = 3.5 \ \mu m/0.35 \ \mu m$, $V_{GS} = -3.3 \ V$, and $V_T = -0.66 \ V$. For $V_{DS} = -3.2 \ V$, calculate R_{DS} .
- **3.20** In Example 3.13 we showed how to calculate voltage levels in a pseudo-NMOS inverter. Figure P3.8 depicts a pseudo-PMOS inverter. In this technology, a weak NMOS transistor is used to implement a pull-down resistor.

When $V_x = 0$, V_f has a high value. The PMOS transistor is operating in the triode region, while the NMOS transistor limits the current flow, because it is operating in the saturation region. The current through the PMOS and NMOS transistors has to be the same and is given by equations 3.1 and 3.2. Find an expression for the high-output voltage, $V_f = V_{OH}$, in terms of V_{DD} , V_T , k_p , and k_n , where k_p and k_n are gain factors as defined in Example 3.13.

Figure P3.8 The pseudo-PMOS inverter.

- **3.21** For the circuit in Figure P3.8, assume the values $k'_n = 60 \ \mu \text{A}/\text{V}^2$, $k'_p = 0.4 k'_n$, $W_n/L_n = 0.5 \ \mu \text{m}/0.5 \ \mu \text{m}$, $W_p/L_p = 4.0 \ \mu \text{m}/0.5 \ \mu \text{m}$, $V_{DD} = 5 \text{ V}$ and $V_T = 1 \text{ V}$. When $V_x = 0$, calculate the following:
 - (a) The static current, I_{stat}
 - (b) The on-resistance of the PMOS transistor

(c) V_{OH}

- (d) The static power dissipated in the inverter
- (e) The on-resistance of the NMOS transistor

(f) Assume that the inverter is used to drive a capacitive load of 70 fF. Using equation 3.4, calculate the low-to-high and high-to-low propagation delays.

- **3.22** Repeat problem 3.21 assuming that the size of the NMOS transistor is changed to $W_n/L_n \approx 4.0 \ \mu m/0.5 \ \mu m$.
- **3.23** Example 3.13 (see Figure 3.72) shows that in the pseudo-NMOS technology the pull-up device is implemented using a PMOS transistor. Repeat this problem for a NAND gate built with pseudo-NMOS technology. Assume that both of the NMOS transistors in the gate have the same parameters, as given in Example 3.14.
- **3.24** Repeat problem 3.23 for a pseudo-NMOS NOR gate.
- *3.25 (a) For V_{IH} = 4 V, V_{OH} = 4.5 V, V_{IL} = 1 V, V_{OL} = 0.3 V, and V_{DD} = 5 V, calculate the noise margins NM_H and NM_L.
 (b) Consider an eight-input NAND gate built using NMOS technology. If the voltage drop

(b) Consider an eight-input NAND gate built using NMOS technology. If the voltage drop across each transistor is 0.1 V, what is V_{OL} ? What is the corresponding NM_L using the other parameters from part (a).

- **3.26** Under steady-state conditions, for an *n*-input CMOS NAND gate, what are the voltage levels of V_{OL} and V_{OH} ? Explain.
- **3.27** For a CMOS inverter, assume that the load capacitance is C = 150 fF and $V_{DD} = 5$ V. The inverter is cycled through the low and high voltage levels at an average rate of f = 75 MHz.

(a) Calculate the dynamic power dissipated in the inverter.

(b) For a chip that contains the equivalent of 250,000 inverters, calculate the total dynamic power dissipated if 20 percent of the gates change values at any given time.

- ***3.28** Repeat problem 3.27 for C = 120 fF, $V_{DD} = 3.3$ V, and f = 125 MHz.
- **3.29** In a CMOS inverter, assume that $k'_n = 20 \,\mu\text{A/V}^2$, $k'_p = 0.4 \times k'_n$, $W_n/L_n = 5.0 \,\mu\text{m}/0.5 \,\mu\text{m}$, $W_p/L_p = 5.0 \,\mu\text{m}/0.5 \,\mu\text{m}$, and $V_{DD} = 5$ V. The inverter drives a load capacitance of 150 fF.
 - (a) Find the high-to-low propagation delay.
 - (b) Find the low-to-high low propagation delay.

(c) What should be the dimensions of the PMOS transistor such that the low-to-high and high-to-low propagation delays are equal? Ignore the effect of the PMOS transistor's size on the load capacitance of the inverter.

- **3.30** Repeat problem 3.29 for the parameters $k'_n = 40 \,\mu\text{A}/\text{V}^2$, $k'_p = 0.4 \times k'_n$, $W_n/L_n = W_p/L_p = 3.5 \,\mu\text{m}/0.35 \,\mu\text{m}$, and $V_{DD} = 3.3 \,\text{V}$.
- **3.31** In a CMOS inverter, assume that $W_n/L_n = 2$ and $W_p/L_p = 4$. For a CMOS NAND gate, calculate the required W/L ratios of the NMOS and PMOS transistors such that the available current in the gate to drive the output both low and high is equal to that in the inverter.
- ***3.32** Repeat problem 3.31 for a CMOS NOR gate.
- **3.33** Repeat problem 3.31 for the CMOS complex gate in Figure 3.16. The transistor sizes should be chosen such that in the worst case the available current is at least as large as in the inverter.
- **3.34** Repeat problem 3.31 for the CMOS complex gate in Figure 3.17.

159

(a) the static current, I_{stat}

(b) the voltage, V_f , at the output of the inverter

(c) the static power dissipation in the inverter

(d) If a chip contains 500,000 inverters used in this manner, find the total static/power dissipation.

- **3.36** Using the style of drawing in Figure 3.66, draw a picture of a PLA programmed to implement $f_1(x_1, x_2, x_3) = \sum m(1, 2, 4, 7)$. The PLA should have the inputs x_1, \ldots, x_3 ; the product terms P_1, \ldots, P_4 ; and the outputs f_1 and f_2 .
- **3.37** Using the style of drawing in Figure 3.66, draw a picture of a PLA programmed to implement $f_1(x_1, x_2, x_3) = \sum m(0, 3, 5, 6)$. The PLA should have the inputs x_1, \ldots, x_3 ; the product terms P_1, \ldots, P_4 ; and the outputs f_1 and f_2 .
- **3.38** Show how the function f_1 from problem 3.36 can be realized in a PLA of the type shown in Figure 3.65. Draw a picture of such a PLA programmed to implement f_1 . The PLA should have the inputs x_1, \ldots, x_3 ; the sum terms S_1, \ldots, S_4 ; and the outputs f_1 and f_2 .
- **3.39** Show how the function f_1 from problem 3.37 can be realized in a PLA of the type shown in Figure 3.65. Draw a picture of such a PLA programmed to implement f_1 . The PLA should have the inputs x_1, \ldots, x_3 ; the sum terms S_1, \ldots, S_4 ; and the outputs f_1 and f_2 .
- **3.40** Repeat problem 3.38 using the style of PLA drawing shown in Figure 3.63.
- **3.41** Repeat problem 3.39 using the style of PLA drawing shown in Figure 3.63.
- **3.42** Given that f_1 is implemented as described in problem 3.36, list all of the other possible logic functions that can be realized using output f_2 in the PLA.
- **3.43** Given that f_1 is implemented as described in problem 3.37, list all of the other possible logic functions that can be realized using output f_2 in the PLA.
- **3.44** Consider the function $f(x_1, x_2, x_3) = x_1\overline{x}_2 + x_1x_3 + x_2\overline{x}_3$. Show a circuit using 5 two-input lookup-tables (LUTs) to implement this expression. As shown in Figure 3.39, give the truth table implemented in each LUT. You do not need to show the wires in the FPGA.
- *3.45 Consider the function $f(x_1, x_2, x_3) = \sum m(2, 3, 4, 6, 7)$. Show how it can be realized using two two-input LUTs. As shown in Figure 3.39, give the truth table implemented in each LUT. You do not need to show the wires in the FPGA.
- **3.46** Given the function $f = x_1x_2x_4 + x_2x_3\overline{x}_4 + \overline{x}_1\overline{x}_2\overline{x}_3$, a straightforward implementation in an FPGA with three-input LUTs requires four LUTs. Show how it can be done using only 3 three-input LUTs. Label the output of each LUT with an expression representing the logic function that it implements.

- **3.47** For *f* in problem 3.46, show a circuit of two-input LUTs that realizes the function. You are to use exactly seven two-input LUTs. Label the output of each LUT with an expression representing the logic function that it implements.
- **3.48** Figure 3.39 shows an FPGA programmed to implement a function. The figure shows one pin used for function f, and several pins that are unused. Without changing the programming of any switch that is turned *on* in the FPGA in the figure, list 10 other logic functions, in addition to f, that can be implemented on the unused pins.
- **3.49** Assume that a gate array contains the type of logic cell depicted in Figure P3.9. The inputs in_1, \ldots, in_7 can be connected to either 1 or 0, or to any logic signal.
 - (a) Show how the logic cell can be used to realize $f = x_1x_2 + x_3$.
 - (b) Show how the logic cell can be used to realize $f = x_1x_3 + x_2x_3$.

Figure P3.9 A gate-array logic cell.

3.50 Assume that a gate array exists in which the logic cell used is a three-input NAND gate. The inputs to each NAND gate can be connected to either 1 or 0, or to any logic signal. Show how the following logic functions can be realized in the gate array. (Hint: use DeMorgan's theorem.)

(a) $f = x_1 x_2 + x_3$ (b) $f = x_1 x_2 x_4 + x_2 x_3 \overline{x}_4 + \overline{x}_1$

3.51 Write VHDL code to represent the function

$$f = x_2 \overline{x}_3 \overline{x}_4 + \overline{x}_1 x_2 x_4 + \overline{x}_1 x_2 x_3 + x_1 x_2 x_3$$

(a) Use your CAD tools to implement f in some type of chip, such as a CPLD. Show the logic expression generated for f by the tools. Use timing simulation to determine the time needed for a change in inputs x_1, x_2 , or x_3 to propagate to the output f.

(b) Repeat part (a) using a different chip, such as an FPGA for implementation of the circuit.

3.52 Repeat problem 3.51 for the function

$$f = (x_1 + x_2 + \overline{x}_4) \cdot (\overline{x}_2 + x_3 + \overline{x}_4) \cdot (\overline{x}_1 + x_3 + \overline{x}_4) \cdot (\overline{x}_1 + \overline{x}_3 + \overline{x}_4)$$

3.53 Repeat problem 3.51 for the function

$$f(x_1, \ldots, x_7) = x_1 x_3 \overline{x}_6 + x_1 x_4 x_5 \overline{x}_6 + x_2 x_3 x_7 + x_2 x_4 x_5 x_7$$

3.54 What logic gate is realized by the circuit in Figure P3.10? Does this circuit suffer from any major drawbacks?

Figure P3.10 Circuit for problem 3.54.

***3.55** What logic gate is realized by the circuit in Figure P3.11? Does this circuit suffer from any major drawbacks?

Figure P3.11 Circuit for problem 3.55.