

CMOS Technology

•NMOS

•PMOS

•CMOS

Logic Gates using CMOS

•Layout

Closed switch when $V_G = V_{DD}$

 V_D

Ò

 $V_D = 0 V$

[Adapted from Fundamentals of Digital Logic by Brown & Vranesic]

PMOS structure & operations

Schematic Icon

when $V_G = V_{DD}$

Closed switch when $V_G = 0$ V

Switch-Level View of NMOS & PMOS

 V_f

f

1

0

CMOS Logic Gates

$x_1 \ x_2$	T_1 T_2 T_3 T_4	f
0 0	on on off off	1
0 1	on off off on	0
1 0	off on on off	0
1 1	off off on on	0

Required Conditions

- NAND:
 - PUN : consider f = 1 (i.e., $f = (x_1 x_2)$ ') when $x_1 = 0$ or $x_2 = 0$, thus inputs x_1, x_2 "in parallel"
 - PDN : consider f = 0 (i.e., $f' = x_1 x_2$) when $x_1 = 1$ and $x_2 = 1$, thus x_1, x_2 "in series"
- NOR: the opposite to NAND
 - PUN : consider f = 1 (i.e., $f = (x_1 + x_2)$) when both $x_1 = 0$ and $x_2 = 0$, thus inputs x_1, x_2 "in series"
 - PDN : consider f = 0 (i.e., $f' = x_1 + x_2$) when $x_1 = 1$ or $x_2 = 1$, thus x_1, x_2 "in parallel"
- Note that AND -> "series", OR -> "parallel".

CMOS Circuits

Stick Diagram & Layout

Stick Diagram

CMOS Inverter Layout

[Adapted from http://infopad.eecs.berkeley.edu/~icdesign/. Copyright 1996 UCB]

