
KarnaughKarnaugh Map (KMap (K--Map) OutlineMap) Outline

� SOP and POS Forms
� Terminology
� Circuit Optimization
◦ Literal cost
◦ Gate input cost◦ Gate input cost

� Karnaugh Maps
� 4-variable Examples
� K-Map with don’t care
� K-Map POS forms
� 5-variable Examples
� K-Map : multiple-output cases

mintermsminterms and and MaxtermsMaxterms

� Minterm

◦ A product term which contains each of the n
variables as factors in either complemented
or uncomplemented form is called a minterm
◦ Example for 3 variables: ab’c is a minterm; ab’ ◦ Example for 3 variables: ab’c is a minterm; ab’
is not

� Maxterm

◦ A sum term which contains each of the n variables as
factors in either complemented or
uncomplemented form is called a maxterm
◦ For 3 variables: a’+b+c’ is a maxterm; a’+b is
not

MintermsMinterms and and MaxtermsMaxterms

� Examples
◦ Three-variable example:

Note that (mi)’ = Mi and (Mi)’ = mi

SumSum--ofof--Products (SOP) FormProducts (SOP) Form

� Canonical Sum-of-Products (or
Disjunctive Normal) Form
◦ The sum of all minterms derived from
those rows for which the value of the
function is 1 takes on the value 1 or 0 function is 1 takes on the value 1 or 0
according to the value assumed by f.
Therefore this sum is in fact an algebraic
representation of f. An expression of this
type is called a canonical sum of products,
or a disjunctive normal expression.

SOP ExampleSOP Example

� f = ab’c + a’b + a’bc’ + b’c’

a b c f

m
0

M
0

0 0 0 1 = a
0

m
1

M
1

0 0 1 0 = a
11 1 1

m
2

M
2

0 1 0 1 = a
2

m
3

M
3

0 1 1 1 = a
3

m
4

M
4

1 0 0 1 = a
4

m
5

M
5

1 0 1 1 = a
5

m
6

M
6

1 1 0 0 = a
6

m
7

M
7

1 1 1 0 = a
7

SOP FormSOP Form

Example: f = ab’c + a’b + a’bc’ + b’c’

∑
=

=
N

k

kk maf
0

++++= 1101 mmmmf

General Form :

∑=
++++=

+++

++++=

)5,4,3,2,0(

0011

1101

54320

7654

3210

m

mmmmm

mmmm

mmmmf

ProductProduct--ofof--Sums (POS) FormSums (POS) Form

� Canonical Product-of-Sums (or
Conjunctive Normal) Form

◦ An expression formed of the
product of all maxterms for which product of all maxterms for which
the function takes on the value 0
is called a canonical product of
sums, or a conjunctive normal
expression.

POS FormPOS Form

Example: f = ab’c + a’b + a’bc’ + b’c’

∏
=

+=
N

k

kk Maf
0

)(

++++=)1)(1)(0)(1(MMMMf

General Form :

∏=
=

++++×

++++=

)7,6,1(

)0)(0)(1)(1(

)1)(1)(0)(1(

761

7654

3210

M

MMM

MMMM

MMMMf

TerminologyTerminology

� Literal : a variable, either
uncomplemented or complemented

� Implicant : A product term that
indicates the input valuation(s) for which indicates the input valuation(s) for which
a given function is equal to 1, e.g.,

f = a’b’c’ + a’bc’ + a’b’c + a’bc + abc
Implicants:

5 minterms: a’b’c’, a’bc’, a’b’c, a’bc, abc
Combined minterms: a’b’, a’b, a’c’,a’c,bc,a’

TerminologyTerminology

� Prime implicant : An implicant is called a
prime implicant if it cannot be combined into
another implicant that has fewer literals,
e.g., a’, bc in previous slide.

� Essential prime implicant :a prime implicant
that includes at least one 1 that is not that includes at least one 1 that is not
included in any other prime implicant.

� Cover : A collection of implicants that
account for all valuations for which a given
function is equal to 1.

A set of all minterms, a set of all prime
implicants

Circuit OptimizationCircuit Optimization
� Goal: To obtain the simplest
implementation for a given function

� Optimization is a more formal
approach to simplification that is
performed using a specific procedure
or algorithmor algorithm

� Optimization requires a cost criterion
to measure the simplicity of a circuit

� Cost criteria:
◦ Literal cost (L)
◦ Gate input cost (G)
◦ Gate input cost with NOTs (GN)

Literal CostLiteral Cost
� Literal – a variable or its complement

� Literal cost – the number of literal
appearances in a Boolean expression
corresponding to the logic circuit
diagramdiagram

� Examples:
◦ F = BD + AB’C + AC’D’

◦ F = BD + AB’C + AB’D’ + ABC’

◦ F = (A + B)(A + D)(B + C + D’)(B’ + C’ + D)

◦ Which solution is best?

L=8

L=11

L=10

Gate Input CostGate Input Cost
� Gate input costs - the number of inputs to the gates in

the implementation corresponding exactly to the given
equation or equations. (G - inverters not counted, GN -
inverters counted)

� For SOP and POS equations, it can be found from the
equation(s) by finding the sum of:
◦ all literal appearances

the number of terms excluding terms consisting only of a single ◦ the number of terms excluding terms consisting only of a single
literal,(G) and

◦ optionally, the number of distinct complemented single literals
(GN).

� Example:
◦ F = BD + AB’C + AC’D’
◦ F = BD + AB’C + AB’D’ + ABC’
◦ F = (A + B)(A + D)(B + C + D’)(B’ + C’ + D)
◦ Which solution is best?

G=11,GN=14

G=15,GN=18

G=14,GN=17

Cost Criteria Cost Criteria (continued)(continued)
� Example 1:

� F= A + B C + B’C’

A

B
C

F

L = 5
G = L + 2 = 7

GN = G + 2 = 9

Cha

pter

2

14

A F

� L (literal count) counts the AND inputs and the single

literal OR input.

� G (gate input count) adds the remaining OR gate inputs

� GN(gate input count with NOTs) adds the inverter inputs

Cost Criteria Cost Criteria (continued)(continued)
� Example 2:

� F = ABC + A’B’C’

� L = 6 G = 8 GN = 11

� F = (A+C’)(B’+C)(A’+B)

� L = 6 G = 9 GN = 12

A
B
C

F

L = 6 G = 9 GN = 12

� Same function and same
literal cost

� But first circuit has
better gate input count
and better gate input
count with NOTs

� Select it!

F

A
B
C

Why Use Gate Input Counts?Why Use Gate Input Counts?

� CMOS logic gates:

F

+V

+V

+V

X

•

•

• •

•

• •

•

X .Y

X

•

•

� Each input adds:

� P-type transistor to pull-up network

� N-type transistor to pull-down network

•

F

X

Y

X

X

Y
•

•

•

•

•

•

(a) NOR

G = X + Y

(b) NAND (c) NOT

X

•

•

•

Boolean Function OptimizationBoolean Function Optimization

� Minimizing the gate inputs reduces circuit
cost.

� Some important questions:
◦ When do we stop trying to reduce the cost?

◦ Do we know when we have a minimum cost?

Two-level SOP & POS optimum or near-� Two-level SOP & POS optimum or near-
optimum functions

� Karnaugh maps (K-maps)
◦ Graphical technique useful for up to 5 or 6 inputs

Minimization ProcedureMinimization Procedure

1. Generate all prime implicants.

2. Find the set “essential” prime
implicants.

3. If this set covers all 1’s, then it is the 3. If this set covers all 1’s, then it is the
desired cover. If not, determine other
prime implicants needed to form a
complete minimum-cost cover.

Two Variable KTwo Variable K--MapsMaps
y = 0 y = 1

x = 0
m

0 = m
1 =

x = 1 m
2 = m

3 =

y'x' y

yx

x'

� A 2-variable Karnaugh Map:

◦ Similar to Gray Code

◦ Adjacent minterms differ by one
variable

x = 1 2 = 3 =

x yxy'

KK--Map and Truth TablesMap and Truth Tables
� The K-Map is just a different form of the truth table.

� Example – Two variable function:

◦ We choose a,b,c and d from the set {0,1} to
implement a particular function, F(x,y).

Function Table K-Map

Input

Values

(x,y)

Function

Value

F(x,y)

0 0 a

0 1 b

1 0 c

1 1 d

y = 0 y = 1

x = 0 a b

x = 1 c d

Karnaugh Maps (KKarnaugh Maps (K--map)map)
� A K-map is a collection of squares
◦ Each square represents a minterm
◦ The collection of squares is a graphical
representation of a Boolean function
◦ Adjacent squares differ in the value of one
variablevariable
◦ Alternative algebraic expressions for the same
function are derived by recognizing patterns of
squares

� The K-map can be viewed as
◦ A reorganized version of the truth table

Some Uses of KSome Uses of K--MapsMaps

� Finding optimum or near optimum
◦ SOP and POS standard forms, and
◦ two-level AND/OR and OR/AND circuit
implementations

for functions with small numbers for functions with small numbers
of variables

� Demonstrate concepts used by
computer-aided design programs to
simplify large circuits

KK--Map Function RepresentationMap Function Representation

� Example: F(x,y) = x

�For function F(x,y), the two adjacent cells

F = x y = 0 y = 1

x = 0 0 0

x = 1 1 1

�For function F(x,y), the two adjacent cells
containing 1’s can be combined as:

F = xy’ + xy = x(y+y’) = x

KK--Map Function RepresentationMap Function Representation

� Example: G(x,y) = x + y G = x+y y = 0 y = 1

x = 0 0 1

x = 1 1 1

� For G(x,y), two pairs of adjacent cells
containing 1’s can be combined as:

G(x,y) = x’y + xy’ + xy = xy’ + xy + x’y + xy

= x(y’+y) + y(x’+x) = x+y

Duplicate xy

Three Variable MapsThree Variable Maps

� A three-variable K-map:

� Where each minterm corresponds to the

xy=00 xy=01 xy=11 xy=10

z=0 m2 m6 m4

z=1 m1 m3 m7 m5

m0

� Where each minterm corresponds to the
product terms:

� Note that if the binary value for an index
differs in one bit position, the minterms are
adjacent on the K-Map

xy=00 xy=01 xy=11 xy=10

z=0

z=1

x'y'z' x'yz' xyz' xy'z'

x'y'z x'yz xyz xy'z

Alternative Map LabelingAlternative Map Labeling

�Map use largely involves:
◦ Entering values into the map, and

◦ Reading off product terms from
the map.the map.

�Alternate labelings are useful:

x

y

z

20 4

1

6

3 57

x

y

zz

xxy

y

20 4

1

6

3 57

z

0

1

00 01 11 10

z

Example FunctionsExample Functions
� By convention, we represent the minterms of F by a
"1" in the map and leave the minterms of F’ blank

� Example:

� Example:

x

z

20 4

1

6

3 57

1

1

1

1

∑= (2,3,4,5)),,(mzyxF

∑= (3,4,6,7)),,(mzyxG

� Learn the locations of the 8
indices based on the variable
order shown (x, most

significant and z, least

significant) on the map boundaries

z 1 1

y

z

x
20 4

1

6

3 571

1

1

1

y

∑= (3,4,6,7)),,(mzyxG

Combining SquaresCombining Squares
�By combining squares, we reduce number of
literals in a product term, reducing the
literal cost, thereby reducing the other two
cost criteria

� On a 3-variable K-Map:
◦ One square represents a minterm with three ◦ One square represents a minterm with three
variables
◦ Two adjacent squares represent a product
term with two variables
◦ Four “adjacent” terms represent a product
term with one variable
◦ Eight “adjacent” terms is the function of all
ones (no variables) = 1.

Example: Combining SquaresExample: Combining Squares

� Example: Let

Using the Boolean algebra operations:

z

x
20 4

1

6

3 5711

1 1

y

 ,,,m F ∑=)7632(

� Using the Boolean algebra operations:

� Thus the four terms that form a 2 × 2
square correspond to the term "y".

yxyyx

xyzxyzyzxyz xF

=+=

+++=

'

''''

ThreeThree--Variable MapsVariable Maps

� Reduced literal product terms for SOP
standard forms correspond to rectangles
on K-maps containing cell counts that are
powers of 2.

� Rectangles of 2 cells represent 2 adjacent � Rectangles of 2 cells represent 2 adjacent
minterms; of 4 cells represent 4 minterms
that form a “pairwise adjacent” ring.

� Rectangles can contain non-adjacent cells
due to wrap-around at edges

ThreeThree--Variable MapsVariable Maps
� Example Shapes of 2-cell Rectangles:

x Y’Z’
X’Z’

0 2 6 4

3 51 7
z

y
XY

ThreeThree--Variable MapsVariable Maps

� Example Shapes of 4-cell Rectangles:
x

0 2 6 4

x’
y’

� Read off the product terms for the
rectangles shown

3 51 7
x

y y

Three Variable MapsThree Variable Maps

xx'y

� K-Maps can be used to simplify Boolean functions by

systematic methods. Terms are selected to cover the

“1s”in the map.

� Example: Simplify ∑=)7,5,3,2,1(),,(mzyxF

x

1

1

z

y

1 11

z

x'y

yxzzyxF '),,(+=

KarnaughKarnaugh Map Method Map Method 11

1. Find all essential implicants, circle them,
and mark the minterm(s) that makes
them essential with *.

2. Find enough other prime implicants to
cover the function using 2 criteria:cover the function using 2 criteria:
1. Choose a prime implicant that covers

as many 1’s as possible.
2. Avoid leaving uncovered 1’s isolated.

KarnaughKarnaugh Map Method Map Method 22

1. Circle all prime implicants.
2. Select all essential prime implicants; they

are easily identified by finding 1’s that have
only been circled once.

3. Then choose enough of the other prime 3. Then choose enough of the other prime
implicants to cover all 1’s.

KK--map Example map Example 11

∑=)15,13,12,11,7,3,0(),,,(mDCBAf

''''' DCBAABCCDf ++=

From Marcovitz’s Introduction to Logic Design

KK--map Example map Example 22

∑=)15,12,11,8,7,5,4,0(),,,(mzyxwf

xzwwyzzyf ''' ++=
Note: w’xy’, xyz are redundant

From Marcovitz’s Introduction to Logic Design

KK--map Example map Example 33

∑=)14,12,11,9,8,7,6,4,2,0(),,,(mdcbaf

''''''' dcbcadabbddaf ++++=

From Marcovitz’s Introduction to Logic Design

KK--map Example map Example 44

“Don’t be greedy” Example

ABCCDADACBCAf +++= ''''

From Marcovitz’s Introduction to Logic Design

KK--map Example map Example 55









+







++=

dac

cab

ba

da
dbbdf

'

''

'

''
''

From Marcovitz’s Introduction to Logic Design

Don’t care conditionsDon’t care conditions

� Don’t care means “the value of function
not specified”; such functions are
called Incompletely specified functions.

� Example:

� Circuit for 10-digit display: 4-bit input
from 0-9, (10-15 don’t care!)

KK--map Example with don’t care map Example with don’t care 11

∑∑ +=)15,8,5()13,11,10,7,1(),,,(dmDCBAf

CABDCABDf ''' ++=

From Marcovitz’s Introduction to Logic Design

KK--map Example with don’t care map Example with don’t care 22

















+
















++=

zwy

wxy

wxy

zxy

zxy

zyw

yzwzxf

'

'

'

''

''

'''

''

From Marcovitz’s Introduction to Logic Design

KK--Map & POS FormMap & POS Form

� Direct method : construct K-map and
find the minimum cover, then find the
POS form.

� Find the SOP for f’, then obtain the
POS using the DeMorgan’s law.POS using the DeMorgan’s law.

KK--map Example POS map Example POS 11

∏∑ ==)15,12,9,8,4,1,0()14,13,11,10,7,6,5,3,2(),,,(4321 Mmxxxxf

)'''')()((43213243 xxxxxxxxf +++++=

From Brown’s Fundamentals of digital logic

KK--map Example POS map Example POS 1 1 ((22))

∑=)15,12,9,8,4,1,0(),,,(' 4321 mxxxxf

32 '' xx
43 '' xx

)'''')()((43213243 xxxxxxxxf +++++=
From Brown’s Fundamentals of digital logic

43213243 ''''' xxxxxxxxf ++=

4321 xxxx

32 '' xx
43 '' xx

KK--map Example POS map Example POS 22

∑=)14,11,10,5,4,1,0(),,,(mdcbaf

∑=)15,13,12,9,8,7,6,3,2(),,,(' mdcbaf







++=
abd

caacf '''









++

++
++=

)'''(

)'''(
)')('(

dcb

dba
cacaf

From Marcovitz’s Introduction to Logic Design





++=
bcd

caacf '''

55--variable Kvariable K--MapMap

KK--map Example map Example 55--variable variable 11

∑=)31,28,27,18,16,15,13,11,9,7,6,5,4(),,,,(mEDCBAf

From Marcovitz’s Introduction to Logic Design

Essential Prime Implicants on one layer

KK--map Example map Example 55--variable variable 1 1 ((22))

BDEEABCDECABBEACBAf ++++= ''''''''

From Marcovitz’s Introduction to Logic Design

KK--map Example map Example 55--variable variable 22

∑=)31,30,28,26,24,23,22,21,20,15,13,5,4,1,0(),,,,(mEDCBAf

From Roth’s Fundamentals of Logic Design

66--variable Kvariable K--MapMap

MultipleMultiple--Output ProblemsOutput Problems

� Can design two separate systems for
F and G.

� Or design one system with 2 outputs:
F and G, which may be simpler and
more efficient.
F and G, which may be simpler and
more efficient.

KK--map Example map Example 22--output output 11

∑∑ ==)7,6,3,1(),,();7,6,2,0(),,(mCBAGmCBAF

ABCAG

ABCAF

+=

+=

'

''

From Marcovitz’s Introduction to Logic Design

KK--map Example map Example 22--output output 22

∑∑ ==)7,5,4(),,();7,3,2(),,(mCBAGmCBAF

ACABG

BCBAF

+=

+=

'

'

From Marcovitz’s Introduction to Logic Design

ACABG += '

ABCABG

ABCBAF

+=

+=

'

'

KK--map Example map Example 22--output output 33

∑
∑

=

=

)15,14,13,9,7,5,1(),,,(

);13,11,10,9,7,3,2(),,,(

mZYXWG

mZYXWF

XYZWZWYYXF ''' ++=

From Marcovitz’s Introduction to Logic Design

XYZWWXYZYG

XYZWZWYYXF

''

'''

++=

++=

Total : 20 Inputs, 7 Gates

Separated System Total : 21 Inputs, 8 GatesXZWXYZYG

YZWZWYYXF

++=

++=

'

'''

SummarySummary

� Circuit Optimization
◦ Literal cost
◦ Gate input cost

� (2,3,4,5)-Variable Karnaugh Maps
� K-Maps with don’t care� K-Maps with don’t care
� K-Maps POS forms
� K-Maps Multiple-output problems

Cha

pter

2

57

