Karnaugh Map (K-Map) Outline

- SOP and POS Forms
- Terminology
- Circuit Optimization
 - Literal cost
 - Gate input cost
- Karnaugh Maps
- 4-variable Examples
- K-Map with don't care
- K-Map POS forms
- 5-variable Examples
- K-Map : multiple-output cases

minterms and Maxterms

Minterm

- A product term which contains each of the *n* variables as factors in either complemented or uncomplemented form is called a *minterm*
- Example for 3 variables: ab'c is a minterm; ab'
 is not
- Maxterm
 - A sum term which contains each of the *n variables* as factors in either complemented or uncomplemented form is called a *maxterm*
 - For 3 variables: a'+b+c' is a maxterm; a'+b is not

Minterms and Maxterms

Examples

• Three-variable example:

Row number	<i>x</i> 1	<i>x</i> ₂	<i>x</i> 3	Minterm	Maxterm
0	0	0	0	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$	$M_0 = x_1 + x_2 + x_3$
1	0	0	1	$m_1 = \overline{x}_1 \overline{x}_2 x_3$	$M_1 = x_1 + x_2 + \overline{x}_3$
2	0	1	0	$m_2 = \overline{x}_1 x_2 \overline{x}_3$	$M_2 = x_1 + \overline{x}_2 + x_3$
3	0	1	1	$m_3 = \overline{x}_1 x_2 x_3$	$M_3 = x_1 + \overline{x}_2 + \overline{x}_3$
4	1	0	0	$m_4 = x_1 \overline{x}_2 \overline{x}_3$	$M_4 = \overline{x}_1 + x_2 + x_3$
5	1	0	1	$m_5 = x_1 \overline{x}_2 x_3$	$M_5 = \overline{x}_1 + x_2 + \overline{x}_3$
6	1	1	0	$m_6 = x_1 x_2 \overline{x}_3$	$M_6 = \overline{x}_1 + \overline{x}_2 + x_3$
7	1	1	1	$m_7 = x_1 x_2 x_3$	$M_7 = \overline{x}_1 + \overline{x}_2 + \overline{x}_3$

Note that $(m_i)' = M_i$ and $(M_i)' = m_i$

Sum-of-Products (SOP) Form

- Canonical Sum-of-Products (or Disjunctive Normal) Form
 - The sum of all minterms derived from those rows for which the value of the function is 1 takes on the value 1 or 0 according to the value assumed by f. Therefore this sum is in fact an algebraic representation of f. An expression of this type is called a canonical sum of products, or a disjunctive normal expression.

SOP Example

• f = ab'c + a'b + a'bc' + b'c'

		а	b	С	f
m _o	Μ _Θ	0	0	0	$1 = a_{0}$
m_1	M_1	0	0	1	$0 = a_1$
<i>m</i> ₂	<i>M</i> ₂	0	1	0	$1 = a_2$
<i>m</i> ₃	<i>M</i> ₃	0	1	1	$1 = a_{3}$
<i>m</i> ₄	<i>M</i> ₄	1	0	0	$1 = a_4$
<i>m</i> ₅	<i>M</i> ₅	1	0	1	$1 = a_{5}$
<i>т</i> ₆	М ₆	1	1	0	$0 = a_6$
<i>m</i> ₇	М ₇	1	1	1	$0 = a_7$

General Form :
$$f = \sum_{k=0}^{N} a_k m_k$$

Example: $f = ab'c + a'b + a'bc' + b'c'$

$$f = 1m_0 + 0m_1 + 1m_2 + 1m_3 + 1m_4 + 1m_5 + 0m_6 + 0m_7$$
$$= m_0 + m_2 + m_3 + m_4 + m_5$$
$$= \sum m(0, 2, 3, 4, 5)$$

Product-of-Sums (POS) Form

- Canonical Product-of-Sums (or Conjunctive Normal) Form
 - An expression formed of the product of all maxterms for which the function takes on the value O is called a canonical product of sums, or a conjunctive normal expression.

POS Form

General Form:
$$f = \prod_{k=0}^{N} (a_k + M_k)$$

Example: $f = ab'c + a'b + a'bc' + b'c'$
 $f = (1 + M_0)(0 + M_1)(1 + M_2)(1 + M_3)$
 $\times (1 + M_4)(1 + M_5)(0 + M_6)(0 + M_7)$
 $= M_1 M_6 M_7$

 $= \prod M(1,6,7)$

Terminology

- Literal : a variable, either uncomplemented or complemented
- Implicant : A product term that indicates the input valuation(s) for which a given function is equal to 1, e.g.,

Implicants:

5 minterms: a'b'c', a'bc', a'b'c, a'bc, abc Combined minterms: a'b', a'b, a'c',a'c,bc,a'

Terminology

- Prime implicant : An implicant is called a prime implicant if it cannot be combined into another implicant that has fewer literals, e.g., a', bc in previous slide.
- Essential prime implicant: a prime implicant that includes at least one 1 that is not included in any other prime implicant.
- Cover : A collection of implicants that account for all valuations for which a given function is equal to 1.
- A set of all minterms, a set of all prime implicants

Circuit Optimization

- Goal: To obtain the simplest implementation for a given function
- Optimization is a more formal approach to simplification that is performed using a specific procedure or algorithm
- Optimization requires a cost criterion to measure the simplicity of a circuit
- Cost criteria:
 - Literal cost (L)
 - Gate input cost (G)
 - Gate input cost with NOTs (GN)

Literal Cost

- Literal a variable or its complement
- Literal cost the number of literal appearances in a Boolean expression corresponding to the logic circuit diagram

Gate Input Cost

- Gate input costs the number of inputs to the gates in the implementation corresponding exactly to the given equation or equations. (G – inverters not counted, GN – inverters counted)
- For SOP and POS equations, it can be found from the equation(s) by finding the sum of:
 - all literal appearances
 - the number of terms excluding terms consisting only of a single literal,(G) and
 - optionally, the number of distinct complemented single literals (GN). G=11,GN=14

G=15,GN=18

G=14,GN=17

- Example:
 - $F = BD + AB'C + AC'D^{\prime\prime}$
 - $F = BD + AB'C + AB'D' + ABC'^{\perp}$
 - F = (A + B)(A + D)(B + C + D')(B' + C' + D)

• Which solution is best?

- L (literal count) counts the AND inputs and the single literal OR input.
- G (gate input count) adds the remaining OR gate inputs
- GN(gate input count with NOTs) adds the inverter inputs

Cha pter 2 14

Cost Criteria (continued)

• Example 2:

- F = ABC + A'B'C'
- L = 6 G = 8 GN = 11
- F = (A+C')(B'+C)(A'+B)

- <u>Same</u> function and <u>same</u> literal cost
- But first circuit has <u>better gate</u> input count and <u>better gate</u> input count with NOTs
- Select it!

Why Use Gate Input Counts?

CMOS logic gates:

- Each input adds:
 - P-type transistor to pull-up network
 - N-type transistor to pull-down network

Boolean Function Optimization

- Minimizing the gate inputs reduces circuit cost.
- Some important questions:
 - When do we stop trying to reduce the cost?
 - Do we know when we have a minimum cost?
- Two-level SOP & POS optimum or nearoptimum functions
- Karnaugh maps (K-maps)
 - Graphical technique useful for up to 5 or 6 inputs

Minimization Procedure

- 1. Generate all prime implicants.
- Find the set "essential" prime implicants.
- If this set covers all 1's, then it is the desired cover. If not, determine other prime implicants needed to form a complete minimum-cost cover.

Two Variable K-Maps

A 2-variable Karnaugh Map:
 Similar to Gray Code
 Adjacent minterms differ by one variable

K-Map and Truth Tables

- The K-Map is just a different form of the truth table.
- Example Two variable function:
 - We choose a,b,c and d from the set {0,1} to implement a particular function, F(x,y).

Function Table

K-Map

Input Values (x,y)	Function Value F(x,y)
0 0	а
01	b
10	С
11	d

	y = 0	y = 1
$\mathbf{x} = 0$	a	b
x = 1	C	d

Karnaugh Maps (K-map)

- A K-map is a collection of squares
 - Each square represents a minterm
 - The collection of squares is a graphical representation of a Boolean function
 - Adjacent squares differ in the value of one variable
 - Alternative algebraic expressions for the same function are derived by recognizing patterns of squares
- The K-map can be viewed as
 - A reorganized version of the truth table

Some Uses of K-Maps

- Finding optimum or near optimum
 - SOP and POS standard forms, and
 - two-level AND/OR and OR/AND circuit implementations

for functions with small numbers of variables

 Demonstrate concepts used by computer-aided design programs to simplify large circuits

K-Map Function Representation

• Example:
$$F(x,y) = x$$
 $F = x$ $y = 0$ $y = 1$
 $x = 0$ 0 0
 $x = 1$ 1 1

For function F(x,y), the two adjacent cells containing 1's can be combined as:

$$F = xy' + xy = x(y+y') = x$$

K-Map Function Representation

Example: G(x,y) = x + y

For G(x,y), two pairs of adjacent cells containing 1's can be combined as: Duplicate xy G(x,y) = x'y + xy' + xy = xy' + xy + x'y + xy = x(y'+y) + y(x'+x) = x+y

Three Variable Maps

• A three-variable K-map:

_		⁻ xy=00	xy=01	xy=11	xy=10
Z	z=0	m ₀	m ₂	m ₆	m ₄
7	z=1	m ₁	m ₃	m ₇	m ₅

 Where each minterm corresponds to the product terms:

	xy=00	xy=01	xy=11	xy=10
z=0	x'y'z'	x'yz'	xyz'	xy'z'
z=1	x'y'z	x'yz	xyz	xy'z

 Note that if the binary value for an <u>index</u> differs in one bit position, the minterms are adjacent on the K-Map

Alternative Map Labeling

- Map use largely involves:
 - Entering values into the map, and
 - Reading off product terms from the map.
- Alternate labelings are useful:

Example Functions

- By convention, we represent the minterms of F by a "1" in the map and leave the minterms of F' blank
- Example:

$$F(x, y, z) = \sum m(2,3,4,5)$$

$$G(x, y, z) = \sum m(3, 4, 6, 7)$$

Learn the locations of the 8 indices based on the variable order shown (x, most Z 1 significant and z, least significant) on the map boundaries

Combining Squares

- By combining squares, we reduce number of literals in a product term, reducing the literal cost, thereby reducing the other two cost criteria
- On a 3-variable K-Map:
- One square represents a minterm with three variables
- Two adjacent squares represent a product term with two variables
- Four "adjacent" terms represent a product term with one variable
- Eight "adjacent" terms is the function of all ones (no variables) = 1.

Example: Combining Squares

- Using the Boolean algebra operations: F = x'yz'+x'yz + xyz'+xyz
 - = x'y + xy = y
- Thus the four terms that form a 2×2 square correspond to the term "y".

Three-Variable Maps

- Reduced literal product terms for SOP standard forms correspond to <u>rectangles</u> on K-maps containing cell counts that are powers of 2.
- Rectangles of 2 cells represent 2 adjacent minterms; of 4 cells represent 4 minterms that form a "pairwise adjacent" ring.
- Rectangles can contain non-adjacent cells due to wrap-around at edges

Three-Variable Maps

Example Shapes of 2-cell Rectangles:

Read off the product terms for the rectangles shown

Three Variable Maps

- K-Maps can be used to simplify Boolean functions by systematic methods. Terms are selected to cover the "1s"in the map.
- Example: Simplify $F(x, y, z) = \sum m(1, 2, 3, 5, 7)$

Karnaugh Map Method I

- Find all essential implicants, circle them, and mark the minterm(s) that makes them essential with *.
- 2. Find enough other prime implicants to cover the function using 2 criteria:
 - 1. Choose a prime implicant that covers as many 1's as possible.
 - 2. Avoid leaving uncovered 1's isolated.

Karnaugh Map Method 2

- 1. Circle all prime implicants.
- Select all essential prime implicants; they are easily identified by finding 1's that have only been circled once.
- 3. Then choose enough of the other prime implicants to cover all 1's.

K-map Example I

$$f(A, B, C, D) = \sum m(0,3,7,11,12,13,15)$$

f = CD + ABC' + A'B'C'D'

From Marcovitz's Introduction to Logic Design
$f(w, x, y, z) = \sum m(0, 4, 5, 7, 8, 11, 12, 15)$

 $f(a,b,c,d) = \sum m(0,2,4,6,7,8,9,11,12,14)$

f = a'd' + bd' + ab'd + a'bc + c'd'

"Don't be greedy" Example

f = A'BC' + AC'D + A'CD + ABC

$$f = bd + b'd' + \begin{cases} a'd' \\ a'b \end{cases} + \begin{cases} ab'c' \\ ac'd \end{cases}$$

Don't care conditions

• Don't care means "the value of function not specified"; such functions are called Incompletely specified functions.

Example:

а	b	f
	0	0
	1	1
1	0	1
1	1	Х

 Circuit for 10-digit display: 4-bit input from 0-9, (10-15 don't care!)

K-map Example with don't care I $f(A, B, C, D) = \sum m(1, 7, 10, 11, 13) + \sum d(5, 8, 15)$

f = BD + A'C'D + AB'C

K-map Example with don't care 2

From Marcovitz's Introduction to Logic Design

1*

1*

K-Map & POS Form

- Direct method : construct K-map and find the minimum cover, then find the POS form.
- Find the SOP for *f'*, then obtain the POS using the DeMorgan's law.

K-map Example POS I

$$f(x_1, x_2, x_3, x_4) = \sum m(2, 3, 5, 6, 7, 10, 11, 13, 14) = \prod M(0, 1, 4, 8, 9, 12, 15)$$

From Brown's Fundamentals of digital logic

K-map Example POS I (2)

 $f'(x_1, x_2, x_3, x_4) = \sum m(0, 1, 4, 8, 9, 12, 15)$

K-map Example POS 2

$$f(a,b,c,d) = \sum m(0,1,4,5,10,11,14)$$

$$f'(a,b,c,d) = \sum m(2,3,6,7,8,9,12,13,15)$$

5-variable K-Map

K-map Example 5-variable I

 $f(A, B, C, D, E) = \sum m(4,5,6,7,9,11,13,15,16,18,27,28,31)$

Essential Prime Implicants on one layer

K-map Example 5-variable 1 (2)

f = A'B'C + A'BE + AB'C'E' + ABCD'E' + BDE

K-map Example 5-variable 2

Multiple-Output Problems

- Can design two separate systems for F and G.
- Or design one system with 2 outputs: Fand G, which may be simpler and more efficient.

K-map Example 2-output I

 $F(A, B, C) = \sum m(0, 2, 6, 7); G(A, B, C) = \sum m(1, 3, 6, 7)$

K-map Example 2-output 2

 $F(A, B, C) = \sum m(2,3,7); G(A, B, C) = \sum m(4,5,7)$

K-map Example 2-output 3

 $F(W, X, Y, Z) = \sum m(2,3,7,9,10,11,13);$ $G(W, X, Y, Z) = \sum m(1,5,7,9,13,14,15)$

F = X'Y + WYZ + W'XYZG = Y'Z + WXY + W'XYZ

Total : 20 Inputs, 7 Gates

F = X'Y + WYZ + W'YZG = Y'Z + WXY + XZ

Separated System Total : 21 Inputs, 8 Gates

Summary

- Circuit Optimization
 - Literal cost
 - Gate input cost
- (2,3,4,5)-Variable Karnaugh Maps
- K-Maps with don't care
- K-Maps POS forms
- K-Maps Multiple-output problems