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� SOP and POS Forms
� Terminology
� Circuit Optimization
◦ Literal cost
◦ Gate input cost◦ Gate input cost

� Karnaugh Maps
� 4-variable Examples
� K-Map with don’t care
� K-Map POS forms
� 5-variable Examples
� K-Map : multiple-output cases



mintermsminterms and and MaxtermsMaxterms

� Minterm

◦ A product term which contains each of the n 
variables as factors in either complemented 
or uncomplemented form is called a minterm
◦ Example for 3 variables: ab’c is a minterm; ab’ ◦ Example for 3 variables: ab’c is a minterm; ab’ 
is not

� Maxterm

◦ A sum term which contains each of the n variables as 
factors in either complemented or 
uncomplemented form is called a maxterm
◦ For 3 variables: a’+b+c’ is a maxterm; a’+b is 
not



MintermsMinterms and and MaxtermsMaxterms

� Examples
◦ Three-variable example:

Note that (mi)’ = Mi  and (Mi)’ = mi 



SumSum--ofof--Products (SOP) FormProducts (SOP) Form

� Canonical Sum-of-Products (or 
Disjunctive Normal) Form
◦ The sum of all minterms derived from 
those rows for which the value of the 
function is 1 takes on the value 1 or 0 function is 1 takes on the value 1 or 0 
according to the value assumed by f. 
Therefore this sum is in fact an algebraic 
representation of f. An expression of this 
type is called a canonical sum of products, 
or a disjunctive normal expression.



SOP ExampleSOP Example

� f = ab’c + a’b + a’bc’ + b’c’
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SOP FormSOP Form

Example: f = ab’c + a’b + a’bc’ + b’c’
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ProductProduct--ofof--Sums (POS) FormSums (POS) Form

� Canonical Product-of-Sums (or 
Conjunctive Normal) Form

◦ An expression formed of the 
product of all maxterms for which product of all maxterms for which 
the function takes on the value 0 
is called a canonical product of 
sums, or a conjunctive normal 
expression.



POS FormPOS Form

Example: f = ab’c + a’b + a’bc’ + b’c’
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TerminologyTerminology

� Literal : a variable, either 
uncomplemented or complemented

� Implicant : A product term that 
indicates the input valuation(s) for which indicates the input valuation(s) for which 
a given function is equal to 1, e.g.,

f = a’b’c’ + a’bc’ + a’b’c + a’bc + abc
Implicants: 

5 minterms: a’b’c’, a’bc’, a’b’c, a’bc, abc
Combined minterms: a’b’, a’b, a’c’,a’c,bc,a’



TerminologyTerminology

� Prime implicant : An implicant is called a 
prime implicant if it cannot be combined into 
another implicant that has fewer literals, 
e.g., a’, bc in previous slide.

� Essential prime implicant :a prime implicant
that includes at least one 1 that is not that includes at least one 1 that is not 
included in any other prime implicant.

� Cover : A collection of implicants that 
account for all valuations for which a given 
function is equal to 1.

A set of all minterms, a set of all prime 
implicants



Circuit OptimizationCircuit Optimization
� Goal: To obtain the simplest 
implementation for a given function

� Optimization is a more formal 
approach to simplification that is 
performed using a specific procedure 
or algorithmor algorithm

� Optimization requires a cost criterion 
to measure the simplicity of a circuit

� Cost criteria:
◦ Literal cost (L)
◦ Gate input cost (G)
◦ Gate input cost with NOTs (GN)



Literal CostLiteral Cost
� Literal – a variable or its complement

� Literal cost – the number of literal   
appearances in a Boolean expression          
corresponding to the logic circuit      
diagramdiagram

� Examples:
◦ F = BD + AB’C + AC’D’                             

◦ F = BD + AB’C + AB’D’ + ABC’                      

◦ F = (A + B)(A + D)(B + C + D’)(B’ + C’ + D)

◦ Which solution is best?

L=8

L=11

L=10



Gate Input CostGate Input Cost
� Gate input costs  - the number of inputs to the gates in 

the implementation corresponding exactly to the given 
equation or equations. (G - inverters not counted, GN -
inverters counted) 

� For SOP and POS equations, it can be found from the 
equation(s) by finding the sum of:
◦ all literal appearances

the number of terms excluding terms consisting only of a single ◦ the number of terms excluding terms consisting only of a single 
literal,(G) and

◦ optionally, the number of distinct complemented single literals 
(GN).

� Example:
◦ F = BD + AB’C + AC’D’                                       
◦ F = BD + AB’C + AB’D’ + ABC’                      
◦ F = (A + B)(A + D)(B + C + D’)(B’ + C’ + D)
◦ Which solution is best? 

G=11,GN=14

G=15,GN=18

G=14,GN=17



Cost Criteria Cost Criteria (continued)(continued)
� Example 1: 

� F= A + B C + B’C’

A

B
C

F

L = 5
G = L + 2 =  7

GN = G + 2 = 9
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� L (literal count) counts the AND inputs and the single

literal OR input.

� G (gate input count) adds the remaining OR gate inputs

� GN(gate input count with NOTs) adds the inverter inputs



Cost Criteria Cost Criteria (continued)(continued)
� Example 2: 

� F = ABC + A’B’C’

� L =  6  G = 8 GN = 11

� F = (A+C’)(B’+C)(A’+B)

� L = 6  G = 9 GN = 12

A
B
C

F

L = 6  G = 9 GN = 12

� Same function and same
literal cost

� But first circuit has 
better gate input count 
and better gate input 
count with NOTs

� Select it!

F

A
B
C



Why Use Gate Input Counts?Why Use Gate Input Counts?

� CMOS logic gates:
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Boolean Function OptimizationBoolean Function Optimization

� Minimizing the gate inputs reduces circuit 
cost.

� Some important questions:
◦ When do we stop trying to reduce the cost?

◦ Do we know when we have a minimum cost?

Two-level SOP & POS optimum or near-� Two-level SOP & POS optimum or near-
optimum functions

� Karnaugh maps (K-maps)
◦ Graphical technique useful for up to 5 or 6 inputs



Minimization ProcedureMinimization Procedure

1. Generate all prime implicants.

2. Find the set “essential” prime 
implicants.

3. If this set covers all 1’s, then it is the 3. If this set covers all 1’s, then it is the 
desired cover. If not, determine other 
prime implicants needed to form a 
complete minimum-cost cover.



Two Variable KTwo Variable K--MapsMaps
y = 0 y = 1

x = 0
m

0 = m
1 =

x = 1 m
2 = m

3 =

y'x' y

yx

x'

� A 2-variable Karnaugh Map:

◦ Similar to Gray Code

◦ Adjacent minterms differ by one 
variable

x = 1 2 = 3 =

x yxy'



KK--Map and Truth TablesMap and Truth Tables
� The K-Map is just a different form of the truth table. 

� Example – Two variable function:

◦ We choose a,b,c and d from the set {0,1} to 
implement a particular function, F(x,y).

Function Table K-Map

Input 

Values

(x,y)

Function 

Value

F(x,y)

0 0 a

0 1 b

1 0 c

1 1 d

y = 0 y = 1

x = 0 a b

x = 1 c d



Karnaugh Maps (KKarnaugh Maps (K--map)map)
� A K-map is a collection of squares
◦ Each square represents a minterm
◦ The collection of squares is a graphical 
representation of a Boolean function
◦ Adjacent squares differ in the value of one 
variablevariable
◦ Alternative algebraic expressions for the same 
function are derived by recognizing patterns of 
squares

� The K-map can be viewed as
◦ A reorganized version of the truth table



Some Uses of KSome Uses of K--MapsMaps

� Finding optimum or near optimum
◦ SOP and POS standard forms, and
◦ two-level AND/OR and OR/AND circuit 
implementations

for functions with small numbers for functions with small numbers 
of variables

� Demonstrate concepts used by 
computer-aided design programs to 
simplify large circuits



KK--Map Function RepresentationMap Function Representation

� Example: F(x,y) = x

�For function F(x,y), the two adjacent cells 

F = x y = 0 y = 1

x = 0 0 0

x = 1 1 1

�For function F(x,y), the two adjacent cells 
containing 1’s can be combined as:

F = xy’ + xy = x(y+y’) = x



KK--Map Function RepresentationMap Function Representation

� Example: G(x,y) = x + y G = x+y y = 0 y = 1

x = 0 0 1

x = 1 1 1

� For G(x,y), two pairs of adjacent cells 
containing 1’s can be combined as:

G(x,y) = x’y + xy’ + xy = xy’ + xy + x’y + xy

= x(y’+y) + y(x’+x) = x+y

Duplicate xy



Three Variable MapsThree Variable Maps

� A three-variable K-map:

� Where each minterm corresponds to the 

xy=00 xy=01 xy=11 xy=10

z=0 m2 m6 m4

z=1 m1 m3 m7 m5

m0

� Where each minterm corresponds to the 
product terms: 

� Note that if the binary value for an index
differs in one bit position, the minterms are 
adjacent on the K-Map

xy=00 xy=01 xy=11 xy=10

z=0

z=1

x'y'z' x'yz' xyz' xy'z'

x'y'z x'yz xyz xy'z



Alternative  Map LabelingAlternative  Map Labeling

�Map use largely involves:
◦ Entering values into the map, and

◦ Reading off product terms from 
the map.the map.

�Alternate labelings are useful:

x

y

z
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Example FunctionsExample Functions
� By convention, we represent the minterms of F by a 
"1" in the map and leave the minterms of  F’ blank

� Example: 

� Example: 

x
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∑= (2,3,4,5)  ),,( mzyxF

∑= (3,4,6,7)  ),,( mzyxG

� Learn the locations of the 8 
indices based on the variable 
order shown (x, most 

significant and z, least 

significant) on the map boundaries
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Combining SquaresCombining Squares
�By combining squares, we reduce number of 
literals in a product term, reducing the 
literal cost, thereby reducing the other two 
cost criteria

� On a 3-variable K-Map:
◦ One square represents a minterm with three ◦ One square represents a minterm with three 
variables
◦ Two adjacent squares represent a product 
term with two variables
◦ Four “adjacent” terms represent a product 
term with one variable
◦ Eight “adjacent” terms is the function of all 
ones (no variables) = 1.



Example: Combining SquaresExample: Combining Squares

� Example: Let

Using the Boolean algebra operations:

z

x
20 4

1

6

3 5711

1 1

y

 ,,,m F ∑= )7632(

� Using the Boolean algebra operations:

� Thus the four terms that form a 2 × 2 
square correspond to the term "y". 

yxyyx

xyzxyzyzxyz xF 

=+=

+++=

'

''''



ThreeThree--Variable MapsVariable Maps

� Reduced literal product terms for SOP 
standard forms correspond to rectangles
on K-maps containing cell counts that are 
powers of 2. 

� Rectangles of 2 cells represent 2 adjacent � Rectangles of 2 cells represent 2 adjacent 
minterms; of 4 cells represent 4 minterms 
that form a “pairwise adjacent” ring.

� Rectangles can contain non-adjacent cells 
due to wrap-around at edges



ThreeThree--Variable MapsVariable Maps
� Example Shapes of 2-cell Rectangles:

x Y’Z’
X’Z’

0 2 6 4

3 51 7
z

y
XY



ThreeThree--Variable MapsVariable Maps

� Example Shapes of 4-cell Rectangles:
x

0 2 6 4

x’
y’

� Read off the product terms for the 
rectangles shown

3 51 7
x

y y



Three Variable MapsThree Variable Maps

xx'y

� K-Maps can be used to simplify Boolean functions by

systematic methods.   Terms are selected to cover the

“1s”in the map.

� Example:  Simplify ∑= )7,5,3,2,1(  ),,( mzyxF

x

1

1

z

y

1 11

z

x'y

yxzzyxF '  ),,( +=



KarnaughKarnaugh Map Method Map Method 11

1. Find all essential implicants, circle them, 
and mark the minterm(s) that makes 
them essential with *.

2. Find enough other prime implicants to 
cover the function using 2 criteria:cover the function using 2 criteria:
1. Choose a prime implicant that covers 

as many 1’s as possible.
2. Avoid leaving uncovered 1’s isolated.



KarnaughKarnaugh Map Method Map Method 22

1. Circle all prime implicants.
2. Select all essential prime implicants; they 

are easily identified by finding 1’s that have 
only been circled once.

3. Then choose enough of the other prime 3. Then choose enough of the other prime 
implicants to cover all 1’s.



KK--map Example map Example 11

∑= )15,13,12,11,7,3,0(),,,( mDCBAf

''''' DCBAABCCDf ++=

From Marcovitz’s Introduction to Logic Design



KK--map Example map Example 22

∑= )15,12,11,8,7,5,4,0(),,,( mzyxwf

xzwwyzzyf ''' ++=
Note: w’xy’, xyz are redundant

From Marcovitz’s Introduction to Logic Design



KK--map Example map Example 33

∑= )14,12,11,9,8,7,6,4,2,0(),,,( mdcbaf

''''''' dcbcadabbddaf ++++=

From Marcovitz’s Introduction to Logic Design



KK--map Example map Example 44

“Don’t be greedy” Example

ABCCDADACBCAf +++= ''''

From Marcovitz’s Introduction to Logic Design



KK--map Example map Example 55
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From Marcovitz’s Introduction to Logic Design



Don’t care conditionsDon’t care conditions

� Don’t care means “the value of function 
not specified”; such functions are 
called Incompletely specified functions.

� Example:

� Circuit for 10-digit display: 4-bit input 
from 0-9, (10-15 don’t care!)



KK--map Example with don’t care map Example with don’t care 11

∑∑ += )15,8,5()13,11,10,7,1(),,,( dmDCBAf

CABDCABDf ''' ++=

From Marcovitz’s Introduction to Logic Design



KK--map Example with don’t care map Example with don’t care 22
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From Marcovitz’s Introduction to Logic Design



KK--Map & POS FormMap & POS Form

� Direct method : construct K-map and 
find the minimum cover, then find the 
POS form.

� Find the SOP for f’, then obtain the 
POS using the DeMorgan’s law.POS using the DeMorgan’s law.



KK--map Example POS map Example POS 11

∏∑ == )15,12,9,8,4,1,0()14,13,11,10,7,6,5,3,2(),,,( 4321 Mmxxxxf

)'''')()(( 43213243 xxxxxxxxf +++++=

From Brown’s Fundamentals of digital logic



KK--map Example POS map Example POS 1 1 ((22))

∑= )15,12,9,8,4,1,0(),,,(' 4321 mxxxxf

32 '' xx
43 '' xx

)'''')()(( 43213243 xxxxxxxxf +++++=
From Brown’s Fundamentals of digital logic

43213243 ''''' xxxxxxxxf ++=

4321 xxxx

32 '' xx
43 '' xx



KK--map Example POS map Example POS 22

∑= )14,11,10,5,4,1,0(),,,( mdcbaf

∑= )15,13,12,9,8,7,6,3,2(),,,(' mdcbaf







++=
abd

caacf '''









++

++
++=

)'''(

)'''(
)')('(

dcb

dba
cacaf

From Marcovitz’s Introduction to Logic Design





++=
bcd

caacf '''



55--variable Kvariable K--MapMap



KK--map Example map Example 55--variable variable 11

∑= )31,28,27,18,16,15,13,11,9,7,6,5,4(),,,,( mEDCBAf

From Marcovitz’s Introduction to Logic Design

Essential Prime Implicants on one layer



KK--map Example map Example 55--variable variable 1 1 ((22))

BDEEABCDECABBEACBAf ++++= ''''''''

From Marcovitz’s Introduction to Logic Design



KK--map Example map Example 55--variable variable 22

∑= )31,30,28,26,24,23,22,21,20,15,13,5,4,1,0(),,,,( mEDCBAf

From Roth’s Fundamentals of Logic Design



66--variable Kvariable K--MapMap



MultipleMultiple--Output ProblemsOutput Problems

� Can design two separate systems for 
F and G.

� Or design one system with 2 outputs: 
F and G, which may be simpler and 
more efficient.
F and G, which may be simpler and 
more efficient.



KK--map Example map Example 22--output output 11

∑∑ == )7,6,3,1(),,();7,6,2,0(),,( mCBAGmCBAF

ABCAG

ABCAF

+=

+=

'

''

From Marcovitz’s Introduction to Logic Design



KK--map Example map Example 22--output output 22

∑∑ == )7,5,4(),,();7,3,2(),,( mCBAGmCBAF

ACABG

BCBAF

+=

+=

'

'

From Marcovitz’s Introduction to Logic Design

ACABG += '

ABCABG

ABCBAF

+=

+=

'

'



KK--map Example map Example 22--output output 33

∑
∑

=

=

)15,14,13,9,7,5,1(),,,(

);13,11,10,9,7,3,2(),,,(

mZYXWG

mZYXWF

XYZWZWYYXF ''' ++=

From Marcovitz’s Introduction to Logic Design

XYZWWXYZYG

XYZWZWYYXF

''

'''

++=

++=

Total : 20 Inputs, 7 Gates

Separated System Total : 21 Inputs, 8 GatesXZWXYZYG

YZWZWYYXF

++=

++=

'

'''



SummarySummary

� Circuit Optimization
◦ Literal cost
◦ Gate input cost

� (2,3,4,5)-Variable Karnaugh Maps
� K-Maps with don’t care� K-Maps with don’t care
� K-Maps POS forms
� K-Maps Multiple-output problems
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