Logic Gates

- Inverter
- AND Gate
- OR Gate
- Exclusive-OR Gate
- NAND Gate
- NOR Gate
- Exclusive-NOR Gate
- Transmission Gate
- IC

The output of an inverter is always the complement (opposite) of the input.

The output of an AND gate is HIGH only when all inputs are HIGH.

The output of an OR gate is HIGH whenever one or more inputs are HIGH

The output of a NAND gate is HIGH whenever one or more inputs are LOW.

The NAND Gate

3-Input NAND Gate

4-Input NAND Gate

The NOR Gate

Distinctive shape symbol

Rectangular outline symbol

Truth table

0 = LOW 1 = HIGH

A

В

А

В

Х

The output of a NOR gate is LOW whenever one or more inputs are HIGH.

The NOR Gate

3-Input NOR Gate

4-Input NOR Gate

Copyright ©2006 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved.

Х

NAND & NOR Gates Applications

Exclusive-OR Gate

The output of an XOR gate is HIGH whenever the two inputs are different.

Exclusive-NOR Gate

The output of an XNOR gate is HIGH whenever the two inputs are identical.

Transmission Gates

- NMOS passes 0 well, but not 1; PMOS does the opposite.
- Transmission gates pass both 0 and 1 well

Transmission Gates

Slide 16

Upper Saddle River, New Jersey 07458 All rights reserved.

Noninverting Buffer

The buffer is a single-input device which has a gain of 1, mirroring the input at the output. It has value for impedance matching (highto-low) and for isolation of the input and output. Typically, it is used to deliver higher power to drive a large capacitive load.

(a) Implementation of a buffer

(b) Graphical symbol

Tri-state Buffer

Programmable Logic Device (PLD)

Programmable AND array

Programmable link technology

programmed off

Slide 21

- Fuse technology
- Anti-fuse technology
- EPROM technology
- EEPROM technology

=

Transistor turned on or off

by state of input B

SRAM technology

Transistor turned on or off

by state of input A

-

 $+V - \mathbf{W}$

Device programming

- Design entry
 - Text entry

- Graphic (schematic) entry

Programmable Logic

In-system programming (ISP)

 Joint Test Action Group (JTAG)
 Embedded processor

All rights reserved.

Chip Integration Level

- **SSI** = small-scale integration (up to 10 gates)
- **MSI** = medium-scale integration (up to 1000 gates)
- LSI = large-scale integration (up to 10000 gates)
- VLSI = very large-scale integration (over 10000 gates)

Design Abstraction Levels

27

A mux at different levels of abstraction

A mux at different levels of abstraction

multiplexer desing using Mos transistors

30

multiplexer using an MSI building block

