SYNCHRONOUS SEQUENTIAL CIRCUITS

Part I: Analysis

- □ State Table
- □ State Diagram
- □ Finite State Machine (FSM)
- □ Mealy & Moore State Model
- Part 2: Synthesis (Design)
 - General Procedure
 - □Write a State Diagram, State Assignment
 - □ State Table
 - □ State Equations
 - □ Choice of Flip-Flop

GENERAL FORM

- Combinational circuit for both input and output.
- Flip-flops for "memory" function
 Clock signal for "synchronization"

ANALYSIS OF SEQUENTIAL CIRCUITS

- Analysis is describing what a given circuit will do.
- The behavior of a clocked (synchronous) sequential circuit is determined from the <u>inputs</u>, the <u>output</u>, and the <u>states</u> of FF

Steps:

- Obtain state equations
 - FF input equations
 - Output equations
- Fill the state table
 - Put all combinations of inputs and current states
 - Fill the next state and output
- Draw the state diagram

ANALYSIS OF COMBINATIONAL VS SEQUENTIAL CIRCUITS

o<u>Combinational :</u>

Boolean EquationsTruth Table

>Output as a function of inputs

oSequential :

✓State Equations✓State Table✓State Diagram

 Output as a function of input and current state
 Next state as a function of inputs and current state.

STATE EQUATIONS

•A <u>state equation</u> is a Boolean expression which specifies the next state and output as a function of the present state and inputs.

o<u>Example:</u>

The shown circuit has two D-FFs (A,B), an input x and output y.
The D input of a FF determines the next state

A(t+1) = A(t)x+B(t)x = Ax+BxB(t+1) = A'(t)x = A'x

•Output:

y = (A+B)x'

STATE TABLE

•A <u>state table</u> is a table enumerating all present states, inputs, next states and outputs.

•Present state, inputs: list all combinations

•Next states, outputs: derived from state equations

STATE TABLE

•A <u>state table</u> is a table enumerating all present states, inputs, next states and outputs.

•Present state, inputs: list all combinations

•Next states, outputs: derived from state equations

Present State		N	lext	Stat	e	Output			
		x = 0		<i>x</i> = 1		x = 0	<i>x</i> = 1		
Α	В	A	B	Α	B	y	y		
0	0	0	0	0	1	0	0		
0	1	0	0	1	1	1	0		
1	0	0	0	1	0	1	0		
1	1	0	0	1	0	1	0		

STATE DIAGRAM

Prese	ent State	Input	Nex	t State	Output	0/0	\sim	0/1	
Α	В	x	Α	В	Y		\bigcirc		10
0	0	0	0	0	0				Î
0	0	1	0	1	0				
0	1	0	0	0	1	$\square 1/0$		0/1 0/1	1/0
0	1	1	1	1	0				-/ -
1	0	0	0	0	1				
1	0	1	1	0	0				
1	1	0	0	0	1				
1	1	1	1	0	0		$\overbrace{01}$	1/0	\leftarrow

- The **state diagram** is a graphical representation of a state table (provides same information)
- Circles are states (FFs), Arrows are transitions between states
- Labels of arrows represent inputs and outputs
- State diagrams are used to represent "<u>finite state machine</u> (FSM)", which is a mathematical model of computation used to design both sequential circuits and computer programs.
- As the name implies, FSM consists of **finite** number of states.

MEALY VS MOORE FINITE STATE MACHINE (FSM)

•Mealy FSM:

- Output depends on current state and input
- Output is not synchronized with the clock

• Output depends on current state only

EXAMPLE 1

- Analyze this circuit?
- Is this a sequential circuit? Why?
- How many inputs?
- How many outputs?
- How many states?
- What type of memory?

EXAMPLE 1 (CONT.)

EXAMPLE 1 (CONT.)

State equations: $D_A = AX + BX$ $D_B = A' X$ $\mathbf{Y} = (\mathbf{A} + \mathbf{B}) \mathbf{X}'$ ***** State table: Next Present State Input State Output A B В x Α y

EXAMPLE 1 (CONT.)

State diagram:

- State equations:
 - $D_A = AX + BX$ $D_B = A' X$
 - $\mathbf{Y} = (\mathbf{A} + \mathbf{B}) \; \mathbf{X}'$
- State table:

Present State				ext ate	Output		
A	В	x	A	В	у		
0	0	0	0	0	0		
0	0	1	0	1	0		
0	1	0	0	0	1		
0	1	1	1	1	0		
1	0	0	0	0	1		
1	0	1	1	0	0		
1	1	0	0	0	1		
1	1	1	1	0	0		

EXAMPLE 2

- Analyze this circuit.
- What about the output?
- This circuit is an example of a **Moore machine** (output depends <u>**only**</u> on current state)
- **Mealy machines** is the other type (output depends on **<u>both</u>** inputs and current states)

EXAMPLE 3

- Analyze this circuit?
- Is this a sequential circuit? Why?
- How many inputs?
- How many outputs?
- How many states?
- What type of memory?

EXAMPLE 3 (CONT.)

JK Flip Flop (review)

Characteristic Tables and Equations

 $\mathbf{Q}(\mathbf{t+1}) = \mathbf{Q^+} = \mathbf{J}\mathbf{Q'} + \mathbf{K'Q}$

EXAMPLE 3 (CONT.)

 $\begin{aligned} A(t+1) &= J_A A' + K_A A = A' B + A B' + A X \\ B(t+1) &= J_B B' + K_B B = B' X' + A B X + A' B X' \end{aligned}$

EXAMPLE 3 (CONT.)

Present State				ext ate
A	В	x		B
0	0	0	0	1
0	0	1	0	0
0	1	0	1	1
0	1	1	1	0
1	0	0	1	1
1	0	1	1	0
1	1	0	0	0
1	1	1	1	1

EXAMPLE 4

✤Analyze this circuit? x -

- Is this a sequential circuit? Why?
- How many inputs?
- How many outputs?
- How many states?
- What type of memory?

EXAMPLE 4 (CONT.)

State equations:

 $J_A = BX'$ $K_A = BX' + B'X$ $D_B = X$ Y = X'AB **by substitution:** $A(t+1) = J_AA' + K_A'A$ = A'BX' + A(B'+X)(B+X') = A'BX' + A(BX+B'X')B(t+1)=X

EXAMPLE 4 (CONT.)

	Curren	nt State	Input Next S		State	Output
State equations:	A(t)	B(t)	X	<i>A</i> (<i>t</i> +1)	<i>B</i> (<i>t</i> +1)	Y
$J_A = BX'$	0	0	0	0	0	0
$K_A = BX' + B'X$	0	0	1	0	1	0
$D_B = X$	0	1	0	1	0	0
Y = X'AB	0	1	1	0	1	0
by substitution:	1	0	0	1	0	0
$A(t+1) = J_A A' + K_A' A$ $= A' D Y' + A (D Y + D' Y')$	1	0	1	0	1	0
= A'BX'+A(BX+B'X') $B(t+1)=X$	1	1	0	0	0	1
D(0+1)=X	1	1	1	1	1	0

EXAMPLE 5

- Analyze this circuit?
- Is this a sequential circuit? Why?
- How many inputs?
- How many outputs?
- How many states?
- What type of memory?

EXAMPLE 5 (CONT.)

T Flip Flop (review)

Characteristic Tables and Equations

EXAMPLE 5 (CONT.)

EXAMPLE 5 (CONT.)

ANALYSIS SUMMARY

- To analyze a sequential circuit:
 - Obtain state equations
 - FF input equations
 - Output equations
 - Fill the state table
 - Put all combinations of inputs and current states
 - Fill the next state and output
 - For the next state use characteristic table/equation
 - Draw the state diagram
- Two types of synchronous sequential circuits (Mealy and Moore)

DESIGN (SYNTHESIS) OF SYNCHRONOUS SEQUENTIAL CIRCUITS

- The <u>design</u> of a clocked sequential circuit starts from a set of specifications and ends with a logic diagram (Analysis reversed!)
- Building blocks: flip-flops, combinational logic
- Need to choose type and number of flip-flops
- Need to design combinational logic together with flip-flops to produce the required behavior
- The combinational part is
 - flip-flop input equations
 - output equations

DESIGN OF SYNCHRONOUS SEQUENTIAL CIRCUITS

Design Procedure:

- Obtain a state diagram from the specification
 - State reduction if necessary
- Obtain State Table
 - State Assignment
 - Choose type of flip-flops
 - Use FF's excitation table to complete the table
- Derive state equations
 - Obtain the FF input equations and the output equations
 - Use K-Maps to function simplification
- Draw the circuit diagram

STEP1: OBTAINING THE STATE DIAGRAM

A very important step in the design procedure.Requires experience!

•Example: Design a circuit that detects a sequence of three consecutive 1's in a string of bits coming through an input line (serial bit stream)

STEP2: OBTAINING THE STATE TABLE

•Assign binary codes for the states 00, 01, 10, 11 for S_0 , S_1 , S_2 , S_3

•We choose 2 D-FF (simplest!) •Next state specifies what should be the input to each FF

•Example: Design a circuit that detects a sequence of three consecutive 1's in a string of bits coming through an input line (serial bit stream)

State Table for Sequence Detector

Present State A B		Input	Ne St	Output	
		x	A	В	y
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	1	1

STEP3: OBTAINING THE STATE EQUATIONS

•Input Equations : $A(t + 1) = D_A = \sum(3,5,7) = A x + B x$, $B(t + 1) = D_B = \sum(1,5,7) = A x + B' x$, $y = \sum(6,7) = A B$

State Table for Sequence Detector

33

DESIGN WITH OTHER TYPES OF FF

- In designing with D-FFs, the input equations are obtained from the next state (simple!)
- It is not the case when using JK-FF and T-FF !
- **Excitation Table:** Lists the required inputs that will cause certain transitions.
 - Characteristic tables used for analysis, while excitation tables used for design

Flip-Flop Excitation Tables

(<i>t</i>)	Q(t = 1)	J	к	Q(t)	Q(t = 1)	1
)	0	0	х	0	0	(
0	1	1	X	0	1	1
1	0	X	1	1	0	1
1	1	X	0	1	1	0
	(a) <i>JK</i>				(b) <i>T</i>	
$\int c$	$Q(t+1)=JQ^{2}$	'+K'	O(t+1))=TQ'+T'	O	

35

STATE TABLE FOR JK FLIP-FLOP CASE

✤Use the previous state assignment.

Presen	Present State		Next	State	F	Flip-Flop Input			Output
Α	B	X	Α	B	$\mathbf{J}_{\mathbf{A}}$	K _A	$\mathbf{J}_{\mathbf{B}}$	K _B	У
0	0	0	0	0	0	Х	0	Х	0
0	0	1	0	1	0	Х	1	Х	0
0	1	0	0	0	0	Х	Х	1	0
0	1	1	1	0	1	Х	X	1	0
1	0	0	0	0	Х	1	0	Х	0
1	0	1	1	1	Х	0	1	Х	0
1	1	0	0	0	Х	1	Х	1	1
1	1	1	1	1	Х	0	Х	0	1
STATE EQUATIONS AND CIRCUIT $A(t+1) = J_A A' + K_A' A;$ $J_A = Bx, K_A = x', J_B = x, K_B = A' + x'; y = AB$

Note: Fewer logic gates required.

EXAMPLE 1

Problem: Design of A Sequence Recognizer

Design a circuit that reads as inputs continuous bits, and generates an output of '1' if the sequence (1011) is detected

EXAMPLE 1 (CONT.) Step 2: State Table									
Inputs o Combinational		Next State	Output		/0				
Present State	Input	Next State	Output	0	0				
SO	0	S0	0						
S0	1	<i>S1</i>	0						
<i>S1</i>	0	<i>S2</i>	0	OR					
<i>S1</i>	1	<i>S1</i>	0						
<i>S2</i>	0	S0	0						
<i>S2</i>	1	<i>S3</i>	0	Present	Next	State	Out	put	
<i>S3</i>	0	S2	0	State	X=0	X=1	X=0	X=1	
S3	1	S1	1	S0	S0	<i>S1</i>	0	0	
				S0 S1	S0 S2	SI	Ő	0 0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
				<i>S3</i>	<i>S2</i>	<i>S1</i>	0	1	

Step 2: State Table

* state assignment

Q: How many FF?

[log₂(no. of states)]

Input

0

0

1

0

0

Next State

S0

S1

S2

S1

S0

S3

S2

S1

Inputs of Combinational Circuit

Present State

S0

S0

S1

S1

S2

S2

S3

S3

State	Assignment
S0	00
<i>S1</i>	01
<i>S2</i>	10
<i>S3</i>	11

 \square

Output

0

0

0

0

0

0

0

	Inputs of Combinational		Next State	Output
	Present State	Input		
	A B	X	A B	Y
	0 0	0	0 0	0
	0 0	1	0 1	0
⇒	0 1	0	1 0	0
r	0 1	1	0 1	0
	1 0	0	0 0	0
	1 0	1	1 1	0
	1 1	0	1 0	0
	1 1	1	0 1	1

Step 2: State Table

* choose FF

✤ In this example, lets use JK-FF for A and D-FF for B

Inputs o Combinational		Next State	Output
Present State	Input		
A B	X	A B	Y
0 0	0	0 0	0
0 0	1	0 1	0
0 1	0	1 0	0
0 1	1	0 1	0
1 0	0	0 0	0
1 0	1	1 1	0
1 1	0	1 0	0
1 1	1	0 1	1

Present State	Input	Next State	output		lip-flo Input	
A B	X	A B	Y	J_A	K_A	D_B
0 0	0	0 0	0	0	Х	0
0 0	1	0 1	0	0	Х	1
0 1	0	1 0	0	1	Х	0
0 1	1	0 1	0	0	Х	1
1 0	0	0 0	0	Х	1	0
1 0	1	1 1	0	Х	0	1
1 1	0	1 0	0	Х	0	0
1 1	1	0 1	1	Х	1	1

D–FF excitation table

Q(t+1)	D	Operation
0	0	Reset
1	1	Set

JK–FF excitation table

Q(t)	Q(t+1)	J	K	Operation
0	0	0	х	No change
0	1	1	Х	No change Set
1	0	Х	1	Reset
1	1	Х	0	No Change

Step 3: State Equations

se k-map

 $J_A = BX'$ $K_A = BX + B'X'$ $D_B = X$ Y = ABX'

DB = X

Step 4: Draw Circuit

EXAMPLE 2

Problem: Design of A 3-bit Counter

Design a circuit that counts in binary form as follows 000, 001, 010, ... 111, 000, 001, ...

Step1: State Diagram

- The outputs = the states
- Where is the input?
- What is the type of this sequential circuit?

Step2: State Table

\bullet We choose T-FF

T-FF excitation table

Q(t +1)	Т	Operation
Q(t)	0	No change
$\overline{Q}(t)$	1	Complement

Present State		te Next State				Flip-Flop Inputs					
A ₂	A ₁	A	A ₂	A1	A ₀		T _{A2}	T _{A1}	T _{A0}		
0	0	0	0	0	1		0	0	1		
0	0	1	0	1	0		0	1	1		
0	1	0	0	1	1		0	0	1		
0	1	1	1	0	0		1	1	1		
1	0	0	1	0	1		0	0	1		
1	0	1	1	1	0	0	0	1	1		
1	1	0	1	1	1		0	1	1		
1	1	1	0	0	0		1	1	1		

Step3: State Equations

*****Step4: Draw Circuit $T_{A0} = 1$ $T_{A1} = A_0$ $T_{A2} = A_1 A_0$

EXAMPLE 3

Problem: Design of A Sequence Recognizer

Design a **Moore** machine to detect the sequence (111). The circuit has one input (X) and one output (Z).

Step2: State Table
Use binary encoding
Use JK-FF and D-FF

	nputs nb.Ci	of rcuits	Next			of cuit	Output	
Pres Sta		Input	State			Flip-flo Inputs		Output
Α	В	X	Α	В	J_A	KA	DB	Z
0	0	0	0	0	0	Х	0	0
0	0	1	0	1	0	Х	1	0
0	1	0	0	0	0	Х	0	0
0	1	1	1	0	1	Х	0	0
1	0	0	0	0	Х	1	0	0
1	0	1	1	1	Х	0	1	0
1	1	0	0	0	Х	1	0	1
1	1	1	1	1	Х	0	1	1

Step4: Draw Circuit

For step3, use k-maps as usual

Timing Diagram (verification)

***** *Question: Does it detect 111 ?*

EXAMPLE 4

Problem: Design Up/Down counter with Enable

Design a sequential circuit with two JK flip-flops A and B and two inputs X and E. If E = 0, the circuit remains in the same state, regardless of the input X. When E = 1 and X = 1, the circuit goes through the state transitions from 00 to 01 to 10 to 11, back to 00, and then repeats. When E = 1 and X = 0, the circuit goes through the state transitions from 00 to 11 to 10 to 01, back to 00 and then repeats.

F	Pres Sta		Inputs			Next State			FF	Input	S	
	A	В	Е	Х	I	А	В	J _A	K _A		J _B	K _B
(0	0	0	0		0	0	0	Х		0	Х
(0	0	0	1		0	0	0	Х		0	Х
(0	0	1	0		1	1	1	Х		1	Х
(0	0	1	1		0	1	0	Х		1	Х
(0	1	0	0		0	1	0	Х		Х	0
(0	1	0	1		0	1	0	Х		Х	0
(0	1	1	0		0	0	0	Х		Х	1
(0	1	1	1		1	0	1	Х		Х	1
	1	0	0	0		1	0	Х	0		0	Х
	1	0	0	1		1	0	Х	0		0	Х
	1	0	1	0		0	1	Х	1		1	Х
	1	0	1	1		1	1	Х	0		1	Х
	1	1	0	0		1	1	Х	0		Х	0
	1	1	0	1		1	1	Х	0		Х	0
	1	1	1	0		1	0	Х	0		Х	1
-	1	1	1	1		0	0	Х	1		Х	1

EXAMPLE 5

Problem: Design a traffic light controller for a 2way intersection. In each way, there is a sensor and a light

Traffic	Action
EW only	EW Signal green
	NS Signal <mark>red</mark>
NS only	NS Signal green
	EW Signal red
EW & NS	Alternate
No traffic	Previous state

Exercise: Complete the design using:

- D-FF
- JK-FF
- T-FF

CHOICE OF FSM (MOORE VS MEALY)

- ✤In general, Moore-type is easier to design, but may require more states → more FFs.
- ♦ Mealy-type is more flexible and may to state reduction
 → simpler implementation.
- ✤ 3 consecutive 1 detector example

STATE TABLE & CIRCUIT

MEALY-TYPE FSM FOR SERIAL ADDER

Addition performed "sequentially".

STATE DIAGRAM & TABLE

CIRCUIT

State Equations:

D = Y = ab + by + ay, $s = a \oplus b \oplus y$

MOORE-TYPE STATE DIAGRAM & TABLE

Moore-type FSM for serial adder

Present	N	Output			
state	<i>ab</i> = 00	01	10	11	s
G ₀	G ₀	G_1	G_1	H ₀	0
G ₁	G ₀	G_1	G_1	H_0	1
H ₀	G1	H_0	H_0	H_1	0
H_1	G ₁	H_0	H_0	H_1	1

State Table

Present	Ν				
state	<i>ab</i> = 00	01	10	11	Output
<i>Y</i> 2 <i>Y</i> 1		$Y_2 Y_1$			5
0 0	0 0	01	01	10	0
01	0 0	01	01	10	1
10	01	10	10	11	0
11	01	10	10	11	1

State-assigned Table

CIRCUIT

State Equations:

$$D_1 = Y_1 = a \oplus b \oplus y_2, D_2 = Y_2 = ab + by_2 + ay_2,$$

 $s = y_1$

STATE REDUCTION

- Two sequential circuits may exhibits the same input-output behavior, but have a different number of states
- <u>State Reduction</u>: The process of reducing the number of states, while keeping the input-output behavior unchanged.
- It results in <u>fewer</u> Flip flops
- It may increase the combinational logic!

- Is it possible to reduce this FSM?
- How many states?
- How many input/outputs?

Notes:

- we use letters to denote states rather than binary codes
- we only consider input/output sequence and transitions

Step 1: get the state table

	Next	State	Output		
Present State	x = 0	<i>x</i> = 1	x = 0	<i>x</i> = 1	
а	а	Ь	0	0	
b	с	d	0	0	
С	а	d	0	0	
d	е	f	0	1	
е	а	f	0	1	
f	8	f	0	1	
8	a	f	0	1	

- Step 1: get the state table
- Step 2: find similar states

	Next	State	Output		
Present State	x = 0	<i>x</i> = 1	x = 0	<i>x</i> = 1	
a	a	b	0	0	
b	с	d	0	0	
С	a	d	0	0	
d	е	f	0	1	
e		f	0	1	
f	8	f	0	1	
8	a	f	U		

- *e* and *g* are equivalent states
- remove g and replace it with e

Step 1: get the state table Step 2: find similar states

	Next	State	Output		
Present State	x = 0	x = 1	x = 0	<i>x</i> = 1	
а	а	b	0	0	
b	С	d	0	0	
С	а	d	0	0	
d	е	f	0	1	
е	а	f	0	1	
f	2	f	0	1	

e and *g* are equivalent states
remove *g* and replace it with *e*

0/00/0а 0/0 1/00/00/0b С 1/0 1/0 0/0 g d е 1/11/10/0 1/1 1/1
STATE REDUCTION (EXAMPLE)

Step 1: get the state table Step 2: find similar states

Present State	Next	State	Output		
	x = 0	x = 1	x = 0	<i>x</i> = 1	
а	а	b	0	0	
b	С	d	0	0	
	а	d	0	0	
d	е	ſ	0		
е	а	f	0	1	
f	е	J			

• d and f are equivalent states

• remove f and replace it with d

0/00/0а 0/0 1/00/00/0b С 1/0 1/0 0/0 g d е 1/11/10/0 1/1 1/1

STATE REDUCTION (EXAMPLE)

Step 1: get the state table Step 2: find similar states

Present State	Next S	State	Output		
	x = 0	x = 1	x = 0	<i>x</i> = 1	
а	а	b	0	0	
b	С	d	0	0	
С	а	d	0	0	
d	е	d	0	1	
е	а	d	0	1	

• d and f are equivalent states

• remove *f* and replace it with *d*

0/0 0/0а 0/0 1/00/00/0b С 1/0 1/0 0/0 g d е 1/11/10/0 1/1 1/1

PARTITIONING MINIMIZATION PROCEDURE

Definition 1 Two states S_i and S_j are said to be <u>equivalent</u> if and only if for every possible input sequence, the same output sequence will be produced regardless of whether S_i or S_j is the initial state.

**k-successor of* S_i : The next state with input=*k*. *If S_i and S_j are equivalent, then their corresponding *k-successors* for all *k* are also equivalent.

Definition 2 A partition consists of one or more blocks, where each block comprises a subset of states that may be equivalent, but the states in a given block are definitely not equivalent to the states in other blocks.

EXAMPLE

State table of this Moore-type FSM shown below

<u>Step 1</u>: P_1 =(ABCDEFG)

<u>Step 2</u>: A, B, D -> output1, else-> output 0

 $P_2 = (ABD)(CEFG)$

 $\frac{\text{Step 3}: 0 \text{-successors of}}{(\text{ABD}) = (\text{BDB}),}$

1-successors = (CFG)

0-successors of (CEFG)= (FFEF),1-suc=(ECDG) $P_3=(ABD)(CEG)(F)$

Present	Next	Output	
state	w = 0	w = 1	Ζ
А	В	С	1
В	D	F	1
С	F	E	0
D	В	G	1
E	F	С	0
F	Е	D	0
G	F	G	0

EXAMPLE (CONT)

<u>Step 4</u>: F is not in the same block as CEG $P_4=(AD)(B)(CEG)(F)$

Step 5: Check k-successors of AD and CEG

AD: 0-suc=BB,1-suc=CG CEG: 0-suc=FFF,1-suc=ECG Thus, $P_5=(AD)(B)(CEG)(F)$ (AD)->A, (CEG)->C

Present	Next	Output	
state	w = 0	w = 1	Z
А	В	С	1
В	Α	F	1
С	F	С	0
F	С	Α	0

Present	Next	Output	
state	w = 0	w = 1	Ζ
А	В	С	1
В	D	F	1
С	F	Е	0
D	В	G	1
E	F	С	0
F	Е	D	0
G	F	G	0

PREVIOUS EXAMPLE

 $P_{1}=(abcdefg)$ $P_{2}=(abc)(defg)$ $P_{3}=(a)(bc)(df)(eg)$ $P_{4}=(a)(b)(c)(df)(eg)$ $P_{5}=(a)(b)(c)(df)(eg)$

Present State	Next	State	Output		
	x = 0	<i>x</i> = 1	x = 0	<i>x</i> = 1	
а	а	b	0	0	
b	С	d	0	0	
С	а	d	0	0	
d	е	f	0	1	
е	а	f	0	1	
f	8	f	0	1	
g	a	f	0	1	

	Next S	State	Output		
Present State	x = 0	x = 1	x = 0	<i>x</i> = 1	
a	а	b	0	0	
b	С	d	0	0	
С	а	d	0	0	
d	е	d	0	1	
е	а	d	0	1	

A VENDING MACHINE

Specification A candy vending machine with

- accepts only nickels and dimes
- 15 cents for 1 candy
- If 20 cents are deposited, no change, but 5 cents are credited for next purchase.

A VENDING MACHINE (2)

<u>Input</u> D, N: indicate whether a dime or a nickel is deposited.

D, *N* cannot be 1 at the same time.

 $(sense_N, sense_D: Sensor output)$

<u>Output</u> *z* : indicate whether a candy is released or not.

<u>Clock period</u> : 100 ns

A VENDING MACHINE (3)

82

STATE TABLE & MINIMIZATION

<u>1</u>: P_1 =(123456789) <u>2</u>: P₂=(1236)(45789) $\underline{3}$: P₃=(1)(3)(26)(45789) $\underline{4}$: P₄=(1)(3)(26)(478)(59) $\underline{5}$: P₅=(1)(3)(26)(478)(59) New States: $(1) \rightarrow S1$ $(26) \rightarrow S2$ (3)→S3 $(478) \rightarrow S4$ $(59) \rightarrow S5$

Present	Next state				Output
state	DN = 00	01	10	11	z
S1	S1	S3	S2	_	0
S2	S2	$\mathbf{S4}$	S5	_	0
S3	S3	S6	S7	_	0
S4	S1	_	_	_	1
S5	S3	_	_	_	1
S6	S6	$\mathbf{S8}$	S9	-	0
S7	S1	_	_	_	1
S8	S1	_	_	_	1
1					
S9	S3	_	-	_	1
S9 Present			te	-	1 Output
		- ext sta 01		- 11	
Present	Ne			- 11 -	Output
Present state	Ne <i>DN</i> = 00	01	10	- 11 -	Output z
Present state S1	Ne <i>DN</i> = 00 S1	01 S3	10 S2	- 11 -	Output z 0
Present state S1 S2	$\frac{Ne}{DN} = 00$ S1 S2	01 S3 S4	10 S2 S5	- 11	Output z 0 0

Note that this is an example of *Incompletely specified state table*. 83

FSM

EQUIVALENT STATES

Theorem: Two states p and q are <u>eqivalent</u> iff for every single input X, the outputs are the <u>same</u> and the next states are <u>equivalent</u>, that is,

 $\lambda(p, X) = \lambda(q, X) and \delta(p, X) \equiv \delta(q, X)$ where

 $\lambda(p, X)$: Output given "present" state pand input X $\delta(p, X)$: Next state given p and X

IMPLICATION TABLE PROCEDURE

- 1. Construct a chart which contains a square for each pair of states.
- 2. Compare each pair of rows in the state table. If the outputs associated with states *i* and *j* are different, place an X in square *i*-*j* to indicate that $i \neq j$. If the outputs are the same, place the implied pairs in square *i*-*j*. (If the next states of *i* and *j* are *m* and *n* for some input *x*, then *m*-*n* is an implied pair.) If the outputs and next states are the same (or if *i*-*j* only implies itself), place a check ($\sqrt{}$) in square *i*-*j* to indicate that $i \equiv j$.
- 3. Go through the table square-by-square. If square *i*-*j* contains the implied pair m-n, and square m-n contains an X, then $i \neq j$, and an X should be placed in square *i*-*j*.
- 4. If any X's were added in step 3, repeat step 3 until no more X's are added.
- 5. For each square *i*-*j* which does not contain an X, $i \equiv j$.

IMPLICATION TABLE EXAMPLE

IMPLICATION TABLE EXAMPLE (2)

EQUIVALENT SEQUENTIAL CIRCUITS

<u>Definition</u>: Sequential circuit N_1 is equivalent to sequential circuit N_2 if for each state p in N_1 , there is a state q in N_2 such that $p \equiv q$, and conversely, for each state s in N_2 , there is a state t in N_1 such that $s \equiv t$, i.e.,

 $\forall p \in P, \exists q \in Q, p \equiv q \rightarrow N_1 \equiv N_2$ $\forall s \in Q, \exists t \in Q, s \equiv t \rightarrow N_2 \equiv N_1$ where *P*, *Q* : states of N₁, N₂

STATE ASSIGNMENT

State Assignment: Assign unique binary codes to the states

• For m states, we need $\lceil \log_2 m \rceil$ bits (FF)

Example

• Three Possible Assignments:

State	Assignment 1, Binary	Assignment 2, Gray Code	Assignment 3, One-Hot
a	000	000	00001
b	001	001	00010
с	010	011	00100
d	011	010	01000
е	100	110	10000

ONE-HOT ENCODING (STATE ASSIGNMENT)

Each state has only one 1, where the state variable whose value is 1 is regarded "hot", e.g., 001, 010, 100.

✤Feature

> Often lead to simpler output expressions.

≻Consequently, faster circuit.

Useful when applied to CPLD or FPGA with a flip-flop in each cell, i.e., many FFs available.

ONE-HOT ENCODING EXAMPLE (3 CONSECUTIVE 1 DETECTOR)

Stata Assignment	Pr	esent St	ate	Input	Ν	ext Stat	e	Output
State Assignment:	Α	B	С	X	Α	В	С	У
$S_0 \rightarrow 001$	0	0	1	0	0	0	1	0
$S_1 \rightarrow 010$	0	0	1	1	0	1	0	0
$S_2 \rightarrow 100$	0	1	0	0	0	0	1	0
_	0	1	0	1	1	0	0	0
	1	0	0	0	0	0	1	0
_	1	0	0	1	1	0	0	1

Input Equations:

$$D_A = C' x,$$
$$D_B = Cx,$$
$$D_C = x',$$
$$y = Ax$$

DESIGN SUMMARY

- To design a synchronous sequential circuit:
 - Obtain a state diagram
 - State reduction if necessary
 - Obtain State Table
 - State Assignment
 - Choose type of flip-flops
 - Use FF's excitation table to complete the table
 - Derive state equations
 - Use K-Maps
 - Obtain the FF input $\ equations$ and the output equations
 - Draw the circuit diagram