
296.3 Page1

Error Correcting Codes

• Overview

– Hamming Codes

– Linear Codes

296.3 Page2

General Model

codeword (c)

coder

noisy
channel

decoder

message (m)

message or error

codeword’ (c’)

Errors introduced by the
noisy channel:

• changed fields in the
codeword (e.g. a
flipped bit)

• missing fields in the
codeword (e.g. a lost
byte). Called erasures

How the decoder deals
with errors.

• error detection vs.
• error correction

296.3 Page3

Applications

• Storage: CDs, DVDs, “hard drives”,

• Wireless: Cell phones, wireless links

• Satellite and Space: TV, Mars rover, …

• Digital Television: DVD, MPEG2 layover

• High Speed Modems: ADSL, DSL, ..

Reed-Solomon codes are by far the most used in
practice, including pretty much all the examples
mentioned above.

Algorithms for decoding are quite sophisticated.

296.3 Page4

Block Codes

Each message and codeword
is of fixed size

∑∑∑∑ = codeword alphabet

k =|m| n = |c| q = |∑|

C ⊆ Σn (codewords)

∆∆∆∆(x,y) = number of positions
s.t. xi ≠ yi

d = min{∆(x,y) : x,y∈ C, x ≠ y}

s = max{∆(c,c’)} that the code
can correct

Code described as: (n,k,d)q

codeword (c)

coder

noisy
channel

decoder

message (m)

message or error

codeword’ (c’)

296.3 Page5

Hierarchy of Codes

cyclic

linear

BCH

Hamming Reed-Solomon

These are all block codes (operate on fixed-length strengths).

Bose-Chaudhuri-Hochquenghem

C forms a linear subspace of ∑n

of dimension k

C is linear and
c0c1c2…cn-1 is a codeword implies
c1c2…cn-1c0 is a codeword

296.3 Page6

Binary Codes

Today we will mostly be considering ∑ = {0,1} and
will sometimes use (n,k,d) as shorthand for (n,k,d)2

In binary ∆(x,y) is often called the Hamming
distance

296.3 Page7

Hypercube Interpretation

Consider codewords as vertices on a hypercube.

000 001

111

100
101

011

110

010
codeword

The distance between nodes on the hypercube is the
Hamming distance ∆. The minimum distance is d.

001 is equidistance from 000, 011 and 101.

For s-bit error detection d ≥ s + 1

For s-bit error correction d ≥ 2s + 1

d = 2 = min distance
n = 3 = dimensionality
2n = 8 = number of nodes

296.3 Page8

Error Detection with Parity Bit

A (k+1,k,2)2 code

Encoding:

m1m2…mk ⇒ m1m2…mkpk+1

where pk+1 = m1 ⊕ m2 ⊕ … ⊕ mk

d = 2 since the parity is always even (it takes two bit
changes to go from one codeword to another).

Detects one-bit error since this gives odd parity

Cannot be used to correct 1-bit error since any
odd-parity word is equal distance ∆ to k+1 valid
codewords.

296.3 Page9

Error Correcting One Bit Messages

How many bits do we need to correct a one-bit error
on a one-bit message?

000 001

111

100
101

011

110

010

00 01

1110

2 bits
0 -> 00, 1-> 11
(n=2,k=1,d=2)

3 bits
0 -> 000, 1-> 111
(n=3,k=1,d=3)

In general need d ≥ 3 to correct one error. Why?

296.3 Page10

Example of (6,3,3)2 systematic code

Definition: A Systematic code
is one in which the message
appears in the codeword

message codeword

000 000000

001 001011

010 010101

011 011110

100 100110

101 101101

110 110011

111 111000

Same in any bit of message
implies two bits of difference
in extra codeword columns.

296.3 Page11

Error Correcting Multibit Messages

We will first discuss Hamming Codes

Detect and correct 1-bit errors.

Codes are of form: (2r-1, 2r-1 – r, 3) for any r > 1

e.g. (3,1,3), (7,4,3), (15,11,3), (31, 26, 3), …

which correspond to 2, 3, 4, 5, … “parity bits” (i.e. n-k)

The high-level idea is to “localize” the error.

Any specific ideas?

296.3 Page12

Hamming Codes: Encoding

m3m5m6m7m11m10 m9 p8 p0m15m14m13m12

Localizing error to top or bottom half 1xxx or 0xxx

p8 = m15 ⊕ m14 ⊕ m13 ⊕ m12 ⊕ m11 ⊕ m10 ⊕ m9

Localizing error to x1xx or x0xx
m3p4m5m6m7m11m10 m9 p8 p0m15m14m13m12

p4 = m15 ⊕ m14 ⊕ m13 ⊕ m12 ⊕ m7 ⊕ m6 ⊕ m5

Localizing error to xx1x or xx0x
p2m3p4m5m6m7m11m10 m9 p8 p0m15m14m13m12

p2 = m15 ⊕ m14 ⊕ m11 ⊕ m10 ⊕ m7 ⊕ m6 ⊕ m3

Localizing error to xxx1 or xxx0
p1p2m3p4m5m6m7m11m10 m9 p8 p0m15m14m13m12

p1 = m15 ⊕ m13 ⊕ m11 ⊕ m9 ⊕ m7 ⊕ m5 ⊕ m3

296.3 Page13

Hamming Codes: Decoding

We don’t need p0, so we have a (15,11,?) code.
After transmission, we generate

b8 = p8 ⊕ m15 ⊕ m14 ⊕ m13 ⊕ m12 ⊕ m11 ⊕ m10 ⊕ m9

b4 = p4 ⊕ m15 ⊕ m14 ⊕ m13 ⊕ m12 ⊕ m7 ⊕ m6 ⊕ m5

b2 = p2 ⊕ m15 ⊕ m14 ⊕ m11 ⊕ m10 ⊕ m7 ⊕ m6 ⊕ m3

b1 = p1 ⊕ m15 ⊕ m13 ⊕ m11 ⊕ m9 ⊕ m7 ⊕ m5 ⊕ m3

With no errors, these will all be zero
With one error b8b4b2b1 gives us the error location.
e.g. 0100 would tell us that p4 is wrong, and

1100 would tell us that m12 is wrong

p1p2m3p4m5m6m7m11m10 m9 p8 p0m15m14m13m12

296.3 Page14

Hamming Codes

Can be generalized to any power of 2

– n = 2r – 1 (15 in the example)

– (n-k) = r (4 in the example)

– d = 3 (discuss later)

– Can correct one error, but can’t tell difference between
one and two!

– Gives (2r-1, 2r-1-r, 3) code

Extended Hamming code

– Add back the parity bit at the end

– Gives (2r, 2r-1-r, 4) code

– Can correct one error and detect 2

– (not so obvious)

296.3 Page15

Lower bound on parity bits

How many nodes in hypercube do we need so that d = 3?

Each of the 2k codewords eliminates n neighbors plus
itself, i.e. n+1

 )1(log

)1(log

2)1(2

2

2

++≥

++≥

+≥

nkn

nkn

n
kn

In previous hamming code 15 ≥ 11 +  log2(15+1)  = 15

Hamming Codes are called perfect codes since they
match the lower bound exactly

need

296.3 Page16

Lower bound on parity bits

What about fixing 2 errors (i.e. d=5)?

Each of the 2k codewords eliminates itself, its
neighbors and its neighbors’ neighbors, giving:

1log2

)2/)1(1(log

2)2/)1(1(2

2

2

−+≥

−+++≥

−++≥

nk

nnnkn

nnn
kn

Generally to correct s errors:









+







+

21
1

nn

)
21

1(log2 







++








+







++≥

s

nnn
kn L

296.3 Page17

Lower Bounds: a side note
The lower bounds assume random placement of bit

errors.

In practice errors are likely to be less than random, e.g.
evenly spaced or clustered:

x x x x x x

x x x x x x

Can we do better if we assume regular errors?

We will come back to this later when we talk about
Reed-Solomon codes. In fact, this is the main
reason why Reed-Solomon codes are used much
more than Hamming-codes.

296.3 Page18

Linear Codes

If ∑ is a field, then ∑n is a vector space

Definition: C is a linear code if it is a linear subspace of
∑n of dimension k.

This means that there is a set of k independent vectors
vi ∈ ∑n (1 ≤ i ≤ k) that span the subspace.

i.e., every codeword can be written as:
c = a1 v1 + … + ak vk ai ∈ ∑

The sum of two codewords is a codeword.

296.3 Page19

Linear Codes

Vectors for the (7,4,3)2 Hamming code:

m7 m6 m5 p4 m3 p2 p1

v1 = 1 0 0 1 0 1 1

v2 = 0 1 0 1 0 1 0

v3 = 0 0 1 1 0 0 1

v4 = 0 0 0 0 1 1 1

How can we see that d = 3?

296.3 Page20

Generator and Parity Check Matrices
Generator Matrix:

A k x n matrix G such that: C = {xG | x ∈ ∑k}

Made from stacking the spanning vectors

Parity Check Matrix:

An (n – k) x n matrix H such that: C = {y ∈ ∑n | HyT = 0}

Codewords are the nullspace of H

These always exist for linear codes

296.3 Page21

Advantages of Linear Codes

• Encoding is efficient (vector-matrix multiply)

• Error detection is efficient (vector-matrix multiply)

• Syndrome (HyT) has error information

• Gives qn-k sized table for decoding
Useful if n-k is small

296.3 Page22

Example and “Standard Form”

For the Hamming (7,4,3) code:





















=

1110000

1001100

0101010

1101001

G

By swapping columns 4 and 5 it is in the form Ik,A.
A code with a matrix in this form is systematic, and
G is in “standard form”





















=

1101000

1010100

0110010

1110001

G

296.3 Page23

Relationship of G and H

If G is in standard form [Ik,A]
then H = [AT,In-k]

Example of (7,4,3) Hamming code:

















=

1001101

0101011

0010111

H





















=

1101000

1010100

0110010

1110001

G

transpose

296.3 Page24

Proof that H is a Parity Check Matrix

c

HyT = 0

AT
i,* • yT

[1..k] + yT
k+i = 0, for 1 ≤ i ≤ n-k,

(where AT
i,* is row i of AT) .

y[1..k] • A*,i = yk+i, for 1 ≤ i ≤ n-k,
(where A*,i is now column i of A)

y[k+1…n] = y[1..k]A.

xG = [y [1..k] | y[1..k]A] = y, for x = y[1..k]

c

c

c

c

296.3 Page25

The d of linear codes
Theorem: Linear codes have distance d if every set

of (d-1) columns of H are linearly independent
(i.,e., cannot sum to 0), but there is a set of d
columns that are linearly dependent (sum to 0).

Proof: if d-1 or fewer columns are linearly
dependent, then for any codeword y, there is
another codeword y’, in which the bits in the
positions corresponding to the columns are
inverted, that both have the same syndrome, 0.

If every set of d-1 columns is linearly independent,
then changing any d-1 bits in a codeword y must
also change the syndrome (since the d-1
corresponding columns cannot sum to 0).

296.3 Page26

For every code with
G = Ik,A and H = AT,In-k

we have a dual code with
G = In-k, AT and H = A,Ik

The dual of the Hamming codes are the binary
simplex codes: (2r-1, r, 2r-1-r)

The dual of the extended Hamming codes are the
first-order Reed-Muller codes.

Note that these codes are highly redundant and can
fix many errors.

Dual Codes

296.3 Page27

NASA Mariner:

Used (32,6,16) Reed Muller code (r = 5)

Rate = 6/32 = .1875 (only 1 out of 5 bits are useful)

Can fix up to 7 bit errors per 32-bit word

Deep space probes from
1969-1977.

Mariner 10 shown

296.3 Page28

How to find the error locations

HyT is called the syndrome (no error if 0).

In general we can find the error location by creating
a table that maps each syndrome to a set of error
locations.

Theorem: assuming s ≤ 2d-1 every syndrome value
corresponds to a unique set of error locations.

Proof: Exercise.

Table has qn-k entries, each of size at most n (i.e.
keep a bit vector of locations).

