Introduction to antennas

Outline

- What is an antenna?
- Review of EM wave
- Fundamental Parameters of antennas
- Types of antennas

What is an antenna?

- Region of transition between guided and free space propagation
- Concentrates incoming wave onto a sensor (receiving case)
- Launches waves from a guiding structure into space or air (transmitting case)
- Often part of a signal transmitting system over some distance
- Not limited to electromagnetic waves (e.g. acoustic waves)

Free space electromagnetic wave

EM wave in free space

Wave in lossy medium

 $\gamma = \alpha + j\beta$ Propagation constant

 α Attenuation constant

 β Phase constant

Power flow

Poynting vector $\vec{S} = \vec{E} \times \vec{H}$

Average power density
$$S_{av} = \frac{1}{2} |E_x|^2 \frac{1}{Z_0} = \frac{1}{2} |H_y|^2 Z_0$$

Polarization of EM wave

Reflection, refraction

Reflection
$$\theta_r = \theta_i$$

$$\rho = \frac{E_r}{E_i}$$

Depends on media, polarisation of incident wave and angle of incidence.

Reflection and refraction affect polarisation

Guided electromagnetic wave

- Cables
 - Used at frequencies below 35 GHz
- Waveguides
 - Used between 0.4 GHz to 350 GHz
- Quasi-optical system
 - Used above 30 GHz
- TEM wave in cables and quasi-optical systems (same as free space)
- TH,TE and combinations in waveguides
 - E or H field component in the direction of propagation
 - Wave bounces on the inner walls of the guide
 - Lower and upper frequency limits
 - Cross section dimensions proportional to wavelength

Rectangular waveguide

Launching of EM wave

Transition from guided wave to free space wave

Reciprocity

- Transmission and reception antennas can be used interchangeably
- Medium must be linear, passive and isotropic
- Caveat: Antennas are usually optimised for reception or transmission not both !

Basic antenna parameters

- Radiation pattern
- Beam area and beam efficiency
- Effective aperture and aperture efficiency
- Directivity and gain
- Radiation resistance

Radiation pattern

- •Far field patterns
- •Field intensity decreases with increasing distance, as 1/r
- •Radiated power density decreases as $1/r^2$
- •Pattern (shape) independent on distance
- •Usually shown only in principal planes

Far field:
$$r > 2 \frac{D^2}{\lambda}$$

D : largest dimension of the antenna

Radiation pattern (2)

HPBW: half power beam width

Field patterns

$$E_{\theta}(\theta,\phi) \qquad E_{\phi}(\theta,\phi)$$

+ phase patterns

 $\varphi_{\theta}(heta,\phi) \qquad \varphi_{\phi}(heta,\phi)$

$$P(\theta,\phi) = \frac{E_{\theta}^{2}(\theta,\phi) + E_{\phi}^{2}(\theta,\phi)}{Z_{0}}r^{2}$$

. .

. .

$$P_n(\theta,\phi) = \frac{P(\theta,\phi)}{P(\theta,\phi)_{\text{max}}}$$

Beam area and beam efficiency

Beam area

$$\Omega_A = \int_0^{2\pi} \int_0^{\pi} P_n(\theta, \phi) \cdot \sin(\theta) d\theta d\phi = \iint_{4\pi} P_n(\theta, \phi) d\Omega$$

Main beam area

$$\Omega_{M} = \iint_{\substack{Main\\beam}} P_{n}(\theta, \phi) d\Omega$$

Minor lobes area

$$\Omega_m = \iint_{\substack{\min or\\lobes}} P_n(\theta, \phi) d\Omega$$

$$\Omega_A = \Omega_M + \Omega_m$$

Main beam efficiency

$$\mathcal{E}_{M} = \frac{\Omega_{M}}{\Omega_{A}}$$

Effective aperture and aperture efficiency

Receiving antenna extracts power from incident wave

$$P_{rec} = S_{in} \cdot A_e$$

Aperture and beam area are linked:

$$A_e = \frac{\lambda^2}{\Omega_A}$$

For some antennas, there is a clear physical aperture and an aperture efficiency can be defined

$$\varepsilon_{ap} = \frac{A_e}{A_p}$$

Directivity and gain

Directivity
$$D = \frac{P(\theta, \phi)_{\text{max}}}{P(\theta, \phi)_{average}}$$

From pattern
$$D = \frac{4\pi}{\iint_{4\pi} P_n(\theta, \phi) d\Omega} = \frac{4\pi}{\Omega_A}$$

From aperture
$$D = 4\pi \frac{A_e}{\lambda^2}$$
 Isotropic antenna: $\Omega_A = 4\pi$ $D = 1$
Gain $G = k_g D$

 k_g = efficiency factor (0 < k_g < 1) *G* is lower than *D* due to ohmic losses only

Radiation resistance

• Antenna presents an impedance at its terminals

$$Z_A = R_A + jX_A$$

•Resistive part is radiation resistance plus loss resistance

$$R_A = R_R + R_L$$

The radiation resistance does not correspond to a real resistor present in the antenna but to the resistance of space coupled via the beam to the antenna terminals.

Types of Antenna

- Wire
- Aperture
- Arrays

Wire antenna

- Dipole
- Loop
- Folded dipoles
- Helical antenna
- Yagi (array of dipoles)
- Corner reflector
- Many more types

Wire antenna - resonance

- Many wire antennas (but not all) are used at or near resonance
- Some times it is not practical to built the whole resonant length
- The physical length can be shortened using loading techniques
 - Inductive load: e.g. center, base or top coil (usually adjustable)
 - Capacitive load: e.g. capacitance "hats" (flat top at one or both ends)

Yagi-Uda

Aperture antenna

- Collect power over a well defined aperture
- Large compared to wavelength
- Various types:
 - Reflector antenna
 - Horn antenna
 - Lens

Reflector antenna

- Shaped reflector: parabolic dish, cylindrical antenna ...
 - Reflector acts as a large collecting area and concentrates power onto a focal region where the feed is located
- Combined optical systems: Cassegrain, Nasmyth ...
 - Two (Cassegrain) or three (Nasmyth) mirrors are used to bring the focus

to a location where the feed including the transmitter/receiver can be

installed more

Cassegrain antenna

- Less prone to back scatter than simple parabolic antenna
- Greater beam steering possibility: secondary mirror motion amplified by optical system
- Much more compact for a given f/D ratio

Cassegrain antenna (2)

- Gain depends on diameter, wavelength, illumination
- Effective aperture is limited by surface accuracy, blockage
- Scale plate depends on equivalent focal length
- Loss in aperture efficiency due to:
 - Tapered illumination
 - Spillover (illumination does not stop at the edge of the dish)
 - Blockage of secondary mirror, support legs
 - Surface irregularities (effect depends on wavelength)

 $K_g = \cos\left(4\pi \frac{\delta}{\lambda}\right)^2$ $\delta = \text{rms of surface deviation}$

At the SEST: taper efficiency: $\varepsilon_{t} = 0.87$ spillover efficiency: $\varepsilon_{s} = 0.94$ blockage efficiency: $\varepsilon_{b} = 0.96$

Horn antenna

- Rectangular or circular waveguide flared up
- Spherical wave fronts from phase centre
- Flare angle and aperture determine gain

2a

Short dipole

•Length much shorter than wavelength

•Current constant along the length

•Near dipole power is mostly reactive

•As r increases E_r vanishes, E and H gradually become in phase

$$for r \gg \frac{\lambda}{2\pi}, \qquad E_{\theta} and H_{\phi} \text{ vary as } \frac{1}{r} \longrightarrow E_{\theta} = \frac{j60\pi I_0 e^{j(\omega t - \beta r)} \sin(\theta)}{r} \frac{l}{\lambda}$$

$$P \text{ varies as } \frac{1}{r^2}$$

Short dipole pattern

$$\Omega_A = \frac{8\pi}{3} \qquad R_r = 80\pi^2 \left(\frac{l}{\lambda}\right)^2$$

D = 1.5

.

Thin wire antenna

Wire diameter is small compared to wavelengthCurrent distribution along the wire is no longer constant

e.g.
$$I(y) = I_0 \sin\left(\frac{2\pi}{\lambda}\left(\frac{L}{2} \pm y\right)\right)$$

centre - fed dipole

•Using field equation for short dipole, replace the constant current with actual distribution

$$E_{\theta} = \frac{j60I_0 e^{j(\omega t - \beta r)}}{r} \left(\frac{\cos\left(\frac{\beta L \cos(\theta)}{2}\right) - \cos\left(\frac{\beta L}{2}\right)}{\sin(\theta)} \right)$$

centre - fed dipole, I_0 = current at feed point

Thin wire pattern

(X, Y, Z)

 $l = 10\lambda$

 $\Omega_{\rm A} = 1.958$ D = 6.417

Antenna Array Examples

Airborne Warning and Control System (AWACS)

Very Large Antenna (VLA)

dBi versus dBd

•dBi indicates gain vs. isotropic antenna

Without heat losses

Measured antenna

•Isotropic antenna radiates equally well in all directions, spherical pattern

•dBd indicates gain vs. reference half-wavelength dipole •Dipole has a doughnut shaped pattern with a gain of 2.15 dBi dBi=dBd+2.15dB

Feed and line matching

- •The antenna impedance must be matched by the line feeding it if maximum power transfer is to be achieved
- •The line impedance should then be the complex conjugate of that of the antenna
- •Most feed line are essentially resistive

Signal transmission, radar echo

- Transmitting antenna $A_{et}, P_t, G_t, \lambda$
- Receiving antenna A_{er}, P_r, G_r

 σ = radar cross section (area)