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Transmission Lines 

1 Introduction 

For efficient point-to-point transmission of power and information, the source energy must be 

directed or guided. Here, the transverse electromagnetic (TEM) waves guided by 

transmission lines will be discussed. The characteristics of TEM waves here are the same as 

those for a uniform plane wave propagating in an unbounded dielectric medium. Basically, 

these TEM waves are like “guided” waves on a line in contrast with “unguided” waves in free 

space for radiated waves. 

There are three common types of guiding structures that support TEM waves, namely, 

parallel-plate transmission line, two-wire transmission line, and coaxial transmission line. 

The following points should be first pointed out here: 

1. Only perfect conductor supports TEM mode whose electric field has only component 

perpendicular to the line. For good conductors, longitudinal component can exist due to 

the line currents passing through the “imperfect” conductors. This mode is referred to as 

the “quasi-TEM” mode. 

2. In addition, if the surrounding medium is lossy (either through Ohmic loss or dielectric 

loss of the medium), this additional loss should also be taken into account. 

2 General Transmission-Line Equations 

In general, transmission lines are used when the physical dimensions of electric networks are 

usually a considerable fraction of a wavelength (typically, larger than quarter-wavelength) 

and may even be many wavelengths long, whereas ordinary circuit theory is applied to 

networks considerably much smaller than the operating wavelength. A transmission line is a 

distributed-parameter network, or “distributed” circuit, and must be described by circuit 

parameters that are distributed throughout its length, while ordinary electric networks are 

considered “lumped” circuits, whose elements are discrete and currents flowing in lumped-

circuit elements do not vary spatially over the elements. 

Now, consider a “lossy” transmission line consisting of two wires in xz-plane shown in 

Figure 1. Applying Faraday’s law  
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to the contour C and surface S shown in (a) yields 
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Define the voltage between the wires 
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Fig. 1: Contours and surfaces for the derivation of the transmission-line equations 

Suppose a current )(zi exists in the upper wire in the positive z direction and returning in the 

lower wire. Assume that the losses in the wires can be lumped as an impedance through 

which )(zi  passes. The lossy nature of the conductors will result in the resistance per unit 

length, R. There is also the internal inductance per unit length Li due to the current )(zi

partially penetrating the wires, which are not perfect conductors. Thus, 

[ ]
t

tzi
zLtzziRdzzxzx i

zz

z
zz ∂

∂
∆−∆−=−∫

∆+ );(
);(),(),( 21 EE .    (1.5) 

Furthermore, the RHS of (1.2) is related to the magnetic flux external to the wires produced 

by the current, i.e., 
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where Le denotes the external inductance per unit length. 

Substituting (1.4),( 1.5),( 1.6) into (1.2) yields 
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Dividing both sides by z∆ and taking the limit as 0→∆z , we obtain 
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where L = Li + Le. Now, consider Figure 1(b). Applying the continuity equation to the surface 

S yields 
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where Q is the total charge enclosed by S. Over the ends of the cylinder 
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Over the sides of the cylinder, the conductivity of the medium results in a transverse 

conduction current through So so that 
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where G is the per-unit length conductance between the wires produced by the lossy medium. 

In addition, let C denote the per-unit length capacitance, then over the length z∆  
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Inserting (1.10),( 1.11),( 1.12) into (1.9) yields 
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Rewriting (1.13), then dividing both sides by z∆ and 

taking the limit as 0→∆z , we obtain 
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Therefore, the per-unit length model can be shown in 

Figure 2. Equations (1.8) and (1.14) are a pair of 

Fig. 2: The per-unit length model of a 

lossy transmission line 

first-order partial differential equations in v(z;t) and i(z;t), which are called the general 

transmission line equations or telegrapher’s equations. 

For the time-harmonic electromagnetic field, the use of phasor representation helps simplify 

the analysis. Introducing the following quantities: 
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where E, H, B, J are vector phasors, and V, I are (scalar) phasors, then equations (1.8) and 

(1.14) become 
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where LjRZ ω+=ˆ  and CjGY ω+=ˆ . Equations (1.15a) and (1.15b) are called time-

harmonic transmission-line equations, which is useful for steady state analysis with 

sinusoidal waveform. Note that phasors are complex quantities in general. 

From (1.15a) and (1.15b), one obtains the wave equations for the lossy case as follows: 
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where γ is the propagation constant given by 

))((ˆˆ CjGLjRYZj ωωβαγ ++==+=     (1.17) 

(α is called attenuation constant [Np/m] and β is called phase constant [rad/m]). These 

equations are similar to wave equations in lossy media which can be derived from Maxwell’s 

equations. They would reduce to those for the lossless case when R = G = 0, which are quite 

similar to those for the waves in lossless media. The solutions to (1.16) become 
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where the plus and minus superscripts denote waves traveling in the +z and –z directions, 

respectively, and V0
±
, I0

±
 denote wave amplitudes. Substituting (1.18) into (1.15) yields the 

relationships between voltage and current wave amplitudes, which are defined as the 

characteristic impedance: 
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Clearly, using Z0, (1.18b) can be rewritten as 
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Note that V(z) and I(z) are similar to the plane wave (electric field, magnetic field) in a lossy 

medium. The wave decays in z direction due to the e
-αz 

and e
αz

 terms. The velocity of 

propagation or the phase velocity is given by 
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Attenuation constant has unit Np/m where 1 Np/m means attenuation factor 1/e after 1-m 

propagation. Typically represented in dB unit where αdB = 20log10e
α
 = 8.686α and α = 1 

Np/m -> 8.686 dB/m. 

Note that γ and Z0 are characteristic properties of a transmission line, which depend on R, L, 

G, C and ω. 

Special Cases For the following special cases, the expressions are simplified. 

1. Lossless Line (R = 0, G = 0) 

a) Propagation constant: 
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For the lossless lines, ufuLCujj /2/;/1; πωβββαγ ====+= . Thus, the propagation 

constant (the phase constant) is linearly dependent on frequency, i.e., linear phase, but the 

phase velocity is independent of frequency. 

2. Low-loss Line or slightly lossy (R << ωL, G << ωC) low-loss conditions are more easily 

satisfied at very high frequencies. 
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3. Distortionless Line (R/L = G/C)  

For the lossy lines, if the condition 
C
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Thus, α does not depend on frequency, β is linearly dependent on frequency, which is similar 

to the lossless lines, and there is no distortion. Thus, it is called “distortionless” lines. If two 

frequency components have different phase velocity, then the signal will distort. For 

example, let y = cos(ω1t-β1z) cos(ω2t-β2z), and ω2 = 5ω1, β1l = 2π. Figure 3 shows the signal 

at z=0 and z=l  for different u1, u2. 

In general, the phase constant is not a linear function of ω, thus it will lead to a up, which 

depends on frequency. As the different components of a signal propagate along the line with 

different velocities, the signal suffer dispersion. A general, lossy transmission line is 

therefore dispersive, as is a lossy dielectric. 

  
Fig. 3 : Signal distortion 

Example 2.1 A distortionless line has Z0 = 60 Ω, α = 20 mNp/m, u = 0.6c, where c is the 

speed of light in a vacuum. Find R, L, G, C and λ at 100 MHz. 
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3 Transmission-Line Parameters 

Capacitance Recall that the total charge is related to the voltage by Q = CV, the capacitance 

can be found from 
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Conductance (the shunt resistance) When the dielectric medium is lossy (having a small but 

nonzero conductivity), a current will flow from the positive to the negative conductor, and a 

current density field will be established in the medium. Using the Ohm’s law, J = σE, yields 
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For homogeneous media (or when σ and ε have the same spatial dependence) the following 

relationship holds: 
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which is derived from two above equations. 

Inductance The inductance can be directly calculated from 
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However, a comparison of the propagation constant for the TEM wave on a transmission line 

with R = 0 and that for the wave in a medium with constitutive parameters (µ, ε, σ) 
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together with C/G = ε/σ yields 

LC = µε. 
Resistance Series resistance R is determined by introducing a small Ez as a slight perturbation 

of the TEM wave and by finding the Ohmic power dissipated in a unit length of the line. 

Typically, it is calculated by the resistance due to the skin depth. 

i) Parallel plate transmission line Let w, d denote the width, separation and assume the 

medium between plates has constitutive parameters (µ, ε, σ), then 
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The per-unit-length resistance can be calculated from R = 1/σcS, where σc denotes the 

conductivity of the conducting plate and S denotes the cross section which equals the product 

of width w and skin depth δ. Thus, 
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where µc denotes the permeability of the plate and f is the frequency. Also, the factor 2 comes from 

the fact that the transmission line consists of two plates. Note also that a good conductor is assumed 

here in the calculation of skin depth, i.e., 
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ii) Two-wire transmission line Assume the two conducting wires of radius a, separated by D in the 

medium with constitutive parameters (µ, ε, σ), then 
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iii) Coaxial transmission line Assume the (inner, outer) radii be (a, b) and the medium with 

constitutive parameters (µ, ε, σ), then 
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Note that (Si, So) in the equation above denote the cross sections of the (inner,outer) conductors, 

respectively. 

 

4 Wave Characteristics on Finite Transmission Lines (Steady State Analysis) 

Consider the finite transmission line shown in Fig. 4. The length of the line is l. Then, 

 
Fig. 4: Finite transmission line terminated with load impedance ZL. 
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00 ,VV from the above equations yields 
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Substituting (4.4a),( 4.4b) into (4.2a),( 4.2b) yields 
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Introducing a new variable z’=l -z, then (4.5) can be rewritten as  
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The use of hyperbolic functions simplifies the equations above to be 
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The ratio of (V(z’)/I(z’) is the impedance when one looks toward the load end of the line at a 

distance z’ from the load, which is given by 
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At the source end of the line z’=l, the generator looking into the line sees an input impedance 

Zin, which is given by 
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Then the load impedance and the transmission line can be replaced by the input impedance 

Zin as depicted in Fig. 5. The input voltage Vi and input current Ii in Fig. 5 are found from the 

equivalent circuit as follows: 
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The average power delivered by the generator to the 

input terminals of the line is 
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Fig. 5: Equivalent circuit for finite 

transmission line at generator end 

and the average power delivered to the load is 
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For a lossless transmission line, conservation of power requires that (Pav)i = (Pav)L. 

Note that once Vi, Ii are obtained, V0
±
 can be calculated from (4.2a),(4.2b) as 
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then the voltage and current along the transmission line can be found. 

Voltage Reflection Coefficient and Voltage Standing Wave Ratio (VSWR) 

Define the “complex” voltage reflection coefficient as 
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then (2a),(2b) can be rewritten as 
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Therefore, the voltage reflection coefficient at the load is given by 
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The magnitude ratio of the maximum to the minimum voltages along a finite, terminated line 

is defined as the voltage standing wave ratio (VSWR), i.e., 
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which measures “degree of mismatch”. S=1 denotes the matched-load condition. 

Power Flow Due to losses, the power is a function of the position on the line. 

[ ] ( )






















−+==

−
−−

+
−−−+

*

Re
2

1
)(*)(Re

2

1
)(

0

0

0

0
00

zjzzjzzjzzjz

av ee
Z

V
ee

Z

V
eeVeeVzIzVzP

βαβαβαβα
  (4.22) 

Recall that  

[ ])(1)( 0 zeVzV
z Γ+= −+ γ

  (4.15a)  [ ])(1)(
0

0 ze
Z

V
zI

z Γ−= −
+

γ
   (4.15b), 

then, 
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[ ] [ ]











 Γ+Γ−
=














Γ−








Γ+=

−+

−
+

−+

*
0

2

2
2

0

0

0
0

)(Im2)(1
Re

2

1

*
)(1

*

)(1Re
2

1
)(

Z

zjz
eV

ze
Z

V
zeVzP

z

zz

av

α

γγ

     (4.23) 

The law of energy conservation requires that the rate of decrease of Pav(z) with distance along 

the line equals the time-average power loss PL per unit length. Thus, 

)(2)(
)(

zPzP
z

zP
avL

av α==
∂

∂
− ,  (4.24) 

from which we obtain the following formula: 

)(2

)(

zP

zP

av

L=α (Np/m)   (4.25) 

Example 4.1 A certain transmission line operating at ω = 10
6
 rad/s has α = 8 dB/m, β = 1 

rad/m, and Z0 = 60 + j40 Ω, and is 2 m long. If the line is connected to a generator of 10∠0 

V, Zg = 40 Ω and terminated by a load of 20 + j50 Ω, determine 

a) The input impedance 

b) The sending end current 

c) The power at the sending end and the load 
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5 Steady State Analysis of Lossless Transmission Lines 

In most practical applications, low-loss transmission lines are used and thus they can be 

approximated as lossless to simplify the analysis. As previously mentioned, for lossless lines, 

LCjj ωβαγ =+=  (5.1) ; α = 0  (5.2); LCωβ =  (5.3). 

Hence, the input impedance becomes 

l

l

β
β

tan

tan

0

0
0

L

L
in

jZZ

jZZ
ZZ

+
+

= .  (5.4) 

where Z0 is real. Note that βl = ωl /up = 2πl /λ, thus it is more convenient to express l  in terms 

of wavelength, i.e., λ = up/f. Also, the voltage reflection coefficient becomes 

ΓΓ=Γ===Γ −
+

−

−+

−
θββ

β

β
j

L

zj

L

zj

zj

j

eee
V

V

eV

eV
z

)l(22

0

0

0

0)(
z

.  (5.5)  

and [ ])(1)( 000 zeVeVeVzV
zjzjzj Γ+=+= −+−−+ βββ

.  (5.6) 

Let 
−+ −−++ == θθ jj

eVVeVV 0000 , , then 

 L
V

V
z Γ==Γ

+

−

0

0)( , and −+−+
Γ +−=+−= θθλπθθβθ /42 zz . 

1+Γ(z) can be illustrated in the complex plane as shown in Fig. 

6, which is often referred to as the crank diagram. 

 
Fig. 6: The crank diagram 

It follows that 

[ ] )(1)(1)( 00 zVzeVzV
zj Γ+=Γ+= +−+ β

, thus 

( ))(1)( 0max
zVzV Γ+= +

 (5.7) ( ))(1)( 0min
zVzV Γ−= +

 (5.8) 

Clearly, for a matched load |ΓL|=0 and |V(z)|max=|V(z)|min. 

The VSWR then becomes 

||1

||1

|)(|1

|)(|1

||

||
VSWR

min

max

L

L

z

z

V

V
S

Γ−
Γ+

=
Γ−
Γ+

=== .  (5.9) 

Alternatively, 
1

1
)(

+
−

=Γ=Γ
S

S
z L .  (5.10) 

Power Flow The average power is given by 

[ ] ( )

( ) ( ) ( )2

0

2

0

0

0
0

0

0

0

0
00

1
2

1
)(*1

*

)(1Re
2

1

*

Re
2

1
)(*)(Re

2

1
)(

L

zj
zj

zjzjzjzj

av

Z

V
z

Z

eV
zeV

e
Z

V
e

Z

V
eVeVzIzVzP

Γ−=













Γ−








Γ+=























−+==

+−+
−+

−
−

+
−−+

β
β

ββββ

  (5.11) 

(5.11) can be found from summing power traveling in +z and –z directions as follows: 

[ ]
0

2

0

0

0
0

2

1*
Re

2

1
)(*)(Re

2

1
)(

Z

V
e

Z

V
eVzIzVzP

zjzj

av

++

−++++ =













== ββ

  (5.12) 
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[ ]
0

22

0

0

2

0

0

0
0

2

1

2

1*
Re

2

1
)(*)(Re

2

1
)(

Z

V

Z

V
e

Z

V
eVzIzVzP

Lzjzj

av

Γ
==














==

−−−

−−−−− ββ
 (5.13) 

( )2

0

2

0
1

2

1
)()()( Lavavav

Z

V
zPzPzP Γ−=+=

+

−+
.  (5.14) 

Note that the power is uniform along the transmission line, i.e., independent of the position 

on the line, thus the power delivered to the line is the same as the power delivered to the load. 

Clearly, 
2

incident,

reflected,

L

av

av

av

av

P

P

P

P
Γ== +

−

. (5.15) 

Also, the power delivered to the line and to the load can be found from 

[ ] g

gin

in
in

in

i

in

av V
ZZ

Z
VZ

Z

V

Z

VV
IVP

+
=∠=












== )0(,cos

2

1

*

)0(*)0(
Re

2

1
)0(*)0(Re

2

1
2

line to, (5.16) 

[ ] L

L

L

L

av Z
Z

V

Z

VV
IVP ∠=












== cos

2

1

*

)(*)(
Re

2

1
)(*)(Re

2

1
2

load to,

ll
ll .  (5.17) 

Special Cases 

a) Short-circuit load (ZL = 0) 

)/2tan(tan 00 λπβ ll jZjZZ in == , which implies an “inductive” reactance. 

|ΓL|=1 → No power delivered to load (i.e., the load does not consume any power). 

b) Open-circuit load (ZL = ∞) 

)/2tan(/)tan/( 00 λπβ ll jZjZZ in −== , which implies a “capacitive” reactance. 

|ΓL|=1 → No power delivered to load (i.e., the load does not consume any power). 

c) Matched load (ZL = Z0) 

0ZZin =  

|ΓL|=0 → 
+= avav PP → all power is delivered to the load. 

d) Quarter-wavelength transmission line (l = λ/4) 

Since βl =π/2, tan βl  → ∞, thus 

L

in
Z

Z
Z

2

0= . 

It follows that L

j

Le Γ−=Γ=Γ − lβ2)0( , and 

for ZL = 0, Γ L= -1, Γ(0) = 1, Zin=∞ : short-circuit → open-circuit 

      ZL = ∞, Γ L= 1, Γ(0) = -1, Zin=0 : open-circuit → short-circuit 

e) Transmission lines’ length equal multiples of half-wavelength (l = nλ/2) 

Since βl =nπ, tan βl  = 0, thus Zin = ZL, i.e., input impedance is equal to load impedance. 

Note also that since function tan(x) is a “periodic” function with period π, 

Kllll ,3,2,1),2/(tan)/(tan)tan(tan =±=±=±= nnnn λββπβπββ , 

thus adding multiples of half-wavelength does not change the input impedance. 
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Example 5.1 A 10-m section of lossless transmission line having Z0 = 50 Ω and u = 200 m/µs 

is driven by a 26-MHz generator having an open-circuit voltage of Vg = 100 V and generator 

impedance Zg = 50 Ω. The line terminated in a load impedance of ZL = 100 + j50 

Ω. Determine the input impedance to the line and the instantaneous voltage at the input to the 

line and the at the load, i.e., V(0, t) and V(l, t). 

 

 

 

 

 

 

 

 

 

 

Example 5.2 A 1-m section of lossless transmission line having C = 200 pF/m and L = 0.5 

µH/m is driven by a 30-MHz generator having an open-circuit voltage of Vg = 1 V and 

generator impedance Zg = 10 Ω. The line terminated in a load impedance of ZL = 100 + j50 

Ω. Determine the load voltage and the average power delivered to the line and to the load.
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6 Transient Analysis 

In this section, the transient behavior of lossless transmission lines will be discussed. Such 

practical situations include cases where non-time-harmonic signals are used or where the 

conditions are not steady-state. Examples are digital (pulse) signals in computer networks and 

sudden surges in power and telephone lines. 

Recall that the general transmission line equations previously derived are given for lossless 

transmission lines by 

t

tzi
L

z

tzv

∂
∂

=
∂

∂
−

);();(
  (6.1a)   and   

t

tzv
C

z

tzi

∂
∂

=
∂

∂
−

);();(
 (6.1b) 

and the wave equations derived from (6.1a), (6.1b) are 

2

2

2

2 )();(

t

zv
LC

z

tzv

∂
∂

=
∂

∂
  (6.2a) and 

2

2

2

2 )();(

t

zi
LC

z

tzi

∂
∂

=
∂

∂
 (6.2b), 

The general solutions to (6.2a), (6.2b) are 

)/()/();( uztvuztvtzv ++−= −+  (6.3a) )/()/();( uztiuztitzi ++−= −+  (6.3b) 

where +,- signs denote the waves traveling in +z, -z, respectively. v
+
, v

-
, i

+
, i

-
 depend on t, z 

and u.  

Proof 

 

 

 

 

As before, i
±
 can be related to v

±
 via the characteristic impedance as 

;/)/()/( 0Zuztvuzti −=− ++ (6.4a)  0/)/()/( Zuztvuzti +−=+ −−  (6.4b) 

where CLZ /0 = . Hence, 

[ ] 0/)/()/();( Zuztvuztvtzi +−−= −+  (6.5) 

Now, consider a terminated transmission line where a generator with generator resistance Rg 

is applied at t = 0, as depicted in Fig. 7. 

Vg u,Z0)

z = 0 z = 

Rg

t=0

z = z1

RLv(0,t)

+

-

+

-

+

-

v(z1,t) v( ,t)
v
+(z,t) v

-(z,t)

 
Fig. 7: A generator applied to a terminated lossless line at t = 0. 

At the load end (z = l), );();( tiRtv L ll =  (6.6) 

The discontinuity at the load results in the reflection. Recall the voltage reflection coefficient 

mentioned previously, which is given by 

)/(

)/(

utv

utv
L

l

l

−

+
=Γ

+

−

.  (6.7) 

Using ΓL to rewrite v, i at the load as 
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)1)(/()/()/();( Lutvutvutvtv Γ+−=++−= +−+
llll   (6.8a) 

{ } 00 /)1)(/(/)/()/();( ZutvZutvutvti LΓ−−=+−−= +−+
llll  (6.8b) 

Likewise, the current reflection coefficient can be defined as 

)/(

)/(

uti

uti
L

l

l

−
+

=Γ− +

−

.  (6.9) 

Substituting (6.8a),(6.8b) into (6.6) yields 

0/)1)(/()1)(/( ZutvRutv LLL Γ−−=Γ+− ++
ll  or 

L

L
L ZR

Γ−
Γ+

=
1

1
0 . (6.10) 

Solving for ΓL yields 

0

0

ZR

ZR

L

L
L +

−
=Γ ,  (6.11) 

which is the same as that for the steady-state analysis, except this ΓL is real. Note that at the 

load, reflection is like a mirror; reflected wave v
-
, a replica of v

+
 which is flipped around and 

is multiplied by ΓL, is a “mirror image” of v
+
. 

Now, consider the portion of the line at the generator end z = 0. Let T = l /u be the time delay 

and the generator is turned on at t = 0. 

During Tt 20 ≤≤ , no backward-traveling waves will appear at z = 0. Thus, 

)/0();0( utvtv −= + , Tt 20 ≤≤    (6.12a)  0/)/0();0( Zutvti −= + , Tt 20 ≤≤  (6.12b) 

Hence, the ratio of the voltage and current on the line is Z0 for Tt 20 ≤≤ , i.e., the input 

impedance seen by the generator is Z0 during Tt 20 ≤≤ . Thus, 

0/);0()();0()();0( ZtvRtVtiRtVtv gggg −=−= , (6.13) 

so that )();0(
0

0 tV
RZ

Z
tv g

g+
= , Tt 20 ≤≤ . (6.14) 

Therefore, the initial v
+
 has the same shape as Vg(t) and is multiplied by Z0/(Z0+Rg). Likewise, 

g

g

RZ

tV
ti

+
=

0

)(
);0( , Tt 20 ≤≤ .   (6.15) 

After 2T, there exist backward-traveling waves at the generator end. The discontinuity at this 

end will cause the reflection in the same manner as that at the load end. Define the voltage 

reflection coefficient at the generator as 

)/0(

)/0(

utv

utv
g −

+
=Γ +

−

,  (6.16) then 

)1)(/0()/0()/0();0( gutvutvutvtv Γ+−=++−= +−+   (6.17a) 

[ ] 00 /)1)(/0(/)/0()/0();0( ZutvZutvutvti gΓ−−=+−−= +−+  (6.17b) 

Since );0();0( tiRtv g= , 

0/)1)(/0()1)(/0( ZutvRutv ggg Γ−−=Γ+− ++  or 

g

g

g ZR
Γ−

Γ+
=

1

1
0 . (6.18) 
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Solving for Γg yields 

0

0

ZR

ZR

g

g

g +

−
=Γ ,  (6.19) 

which is similar to the voltage reflection coefficient at the load. The reflections at both ends 

will continue until the system reaches the steady-state. 

Reflection Diagram or Bounce Diagram To calculate the 

voltage and current at a particular time and location on a 

transmission line with arbitrary resistive load tends to be 

tedious and difficult to visualize when there are many 

reflected waves. In such cases, the graphical construction of 

a reflection diagram (or a bounce diagram) is helpful. Fig. 8 

shows a typical reflection diagram. +
1V in the figure denotes 

the initial voltage, i.e., v(0;t) in (6.14). It will take the time T 

for this wave to reach the load end and then the reflection 

will take place creating a reflected wave, which will reach 

the generator end at the time 2T. These processes will 

continue until the steady-state. 

If one is interested in finding the voltage at a specific 

location on the line, say z1, first find the time when each 

wave reaches that location, as denoted here by t1, t2 and vice 

versa in the figure. These are time instants when the voltage 

+
1V

+Γ 1VL

+ΓΓ 1VLg

+ΓΓ 1

2
V

Lg

+ΓΓ 1

22 V
Lg

 
Fig. 8: A reflection diagram 

discontinuities occur. Then the voltage at these instants can be obtained by simply adding all 

components together. 

Example 6.1 Consider a 400-m section of lossless transmission line having Z0 = 50 Ω and u = 

200 m/µs. At t = 0 a 30-V battery with zero generator resistance is connected to the line.  

Sketch the distribution of voltage along the line for several instants of time. Then sketch the 

voltage at the load to the line, v(l ;t), as a function of time for 16 µs. 
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Example 6.2 Repeat the previous example where the voltage source is a pulse of 30 V but 

duration 1 µs. The generator resistance remains zero. 

 

 

 

 

Example 6.3 Consider a 400-m length of coaxial cable with C = 100 pF/m and L = 0.25 

µH/m. The cable is terminated in a short circuit and is driven by a pulse source with internal 

resistance of 150 Ω. The pulse has a magnitude of 100 V and duration of 6 µs. Sketch the 

voltage at the input to the line, v(0;t), as a function of time for 18 µs. 
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Capacitive load termination 

Assume that a lossless transmission line is terminated with a capacitive load CL, and a DC 

voltage source Vg with internal resistance Rg is applied. When the switch is closed at t = 0, a 

voltage wave of an amplitude 

g

g

V
RZ

Z
tvV

+
==+

0

0
1 );0( , Tt 20 ≤≤  (6.20). 

travels toward the load. Upon reaching the load at t = l /u = T, a reflected wave V1
-
(t) is 

produced because of mismatch. At z = l , for all t ≥ T, 
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)()();( 11 tVVtvtv L

−+ +==l (6.21); [ ])(
1

)( 11

0

tVV
Z

tiL

−+ −=  (6.22);
dt

tdv
Cti L

LL

)(
)( = (6.23). 

From (6.21), (6.22), one obtains 

)(2)( 01 tiZVtv LL −= + . (6.24) 

Substituting (6.24) into (6.23) yields 

0

1

0

2
)(

1)(

Z

V
tv

Zdt

tdv
C L

L
L

+

=+ , t ≥ T. (6.25) 

 The solution of (6.25) is given by 

{ }LCZTt

L eVtv 0/)(

1 12)(
−−+ −= , t ≥ T, (6.26) 

which can be easily obtained via Laplace’s transform. 

It follows that 

LCZTt

L e
Z

V
ti 0/)(

0

12
)(

−−
+

= , t ≥ T (6.27) ;  [ ]LCZTt
eVtV 0/)(

11 2/12)(
−−+− −= , t ≥ T. (6.28) 

7 The Smith Chart 

The Smith chart is a graphical tool for calculating the characteristics of transmission lines; it 

is constructed with a unit circle (radius 1), i.e., |Γ| ≤ 1. Here, assume that Z0 is real
1
, and 

recall that 
0

0

ZZ

ZZ

L

L
L +

−
=Γ=Γ  (7.1)  or ir

j

LL je L Γ+Γ=Γ=Γ=Γ θ
 (7.2). 

To generalize for use with different Z0, the chart is “normalized” by Z0. For the load 

impedance LZ , normalized impedance zL is given by jxr
Z

Z
z L

L +==
0

 (7.3) 

Using (7.3) in (7.1), (7.2) yields 

1

1

+
−

=Γ+Γ=Γ=Γ
L

L
irL

z

z
j  (7.4)  or  

ir

ir
L

j

j
jxrz

Γ−Γ−
Γ+Γ+

=+=
)1(

)1(
. (7.5) 

Since 
[ ][ ]

22)1(

)1()1(

)1(

)1(

ir

irir

ir

ir jj

j

j

Γ+Γ−
Γ+Γ−Γ+Γ+

=
Γ−Γ−
Γ+Γ+

, 

22

22

)1(

1

ir

irr
Γ+Γ−

Γ−Γ−
=  (7.6a)  and 

22)1(

2

ir

ix
Γ+Γ−

Γ
=   (7.6b) 

Rearranging terms in (7.6) yields 
2

2

2

1

1

1








+

=Γ+







+

−Γ
rr

r
ir  (7.7a) and ( )

22

2 11
1 







=






 −Γ+−Γ
xx

ir  (7.7b) 

                                                           

1
 Recall that most practical transmission lines are assumed lossless or slightly lossy, where the characteristic 

impedance is real. 
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These represent circles with (7.7a) 

centered at (r/(1+r),0) with radius 1/(1+r) 

and (7.7b) centered at (1,1/x) with radius 

1/x. Note also that VSWR = (1+|Γ|)/(1-

|Γ|) is also a circle, thus if Γ is known, so 

is VSWR. 

Figure 9 shows some of constant r circles 

and constant x circles given by (7.7). 

Observations 

1. Short circuit (r = x = 0) corresponds 

to ZL =0 and open circuit (r = x = ∞) 

corresponds to ZL = ∞ + j∞, but short 

circuit is transformed into open 

circuit with l = λ/4 (quarter-

wavelength transformer), i.e., Zin = 

Z0
2
/ZL, and vice versa. 

2. Complete revolution (2π) around the 

Fig. 9 : Constant r circles and constant x circles on 

the Smith chart 

Smith chart represents a distance of λ/2 on the line with clockwise denoting “toward the 

generator (G)” and counterclockwise denoting “toward the load (L)”. 

3. Three scales around the periphery of the Smith chart :λ toward G, λ toward L, λ in 

degree. 

4. Vmax at Zin,max when V
+
, V

-
 in phase and Vmin at Zin,min when V

+
, V

-
 out of phase, which are 

λ/4 apart. 

5. Can also be used as admittance chart with normalized admittance, y = g + jb. 

Application of Smith Chart 

Example 7.1: Input impedance calculation A load impedance of 130+j90 Ω terminates a 50-Ω 

transmission line that is .3λ long. Find ΓL, Γ(z=0), Zin, SWR. 

S olu t ion  The  no rmal iz ed  l oad 

impedance zL = (130+j90)/50 = 

2.6+j1.8. Plot this value on the Smith 

cha r t ,  one  can  f i nd  t ha t  ΓL  = 

0.60∠21.8° and SWR = 3.98. Since 

the line is .3λ long, by moving the 

d i s t a n c e  . 3 λ  ×  4 π  / 

λ = 1.2π = 216° toward the generator 

along the |Γ|=0.60 circle, one can find 

the input impedance and reflection 

coefficient at the generator to be: 

Zin = Z0zin = 50(0.255+j0.117) = 

12.7+j5.8 Ω and Γ(z=0) = Γin = 

0.60∠165.8°. 

Quiz 1 Repeat example 1 for a 100-Ω transmission line. 
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Example 7.2: Admittance calculation Let yL denote the normalized load admittance, then yL = 

1/zL and 
1

1

1/1

1/1
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−
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−
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L
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. Recall that 

1
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=Γ=Γ
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L
L

z

z
, it follows that 

πj

L

L e
y

y
Γ=Γ−=

+
−

1

1
. Thus, the normalized admittance can be found by rotating the normalized 

impedance by 180°. 
Use the previous example as an example. yL = 0.26-j0.18, thus YL = 5.2-j3.6 mS. Then by 

moving 1.2π toward the generator, one can find that yin = 3.24-j1.48, thus Yin = 64.8-29.6 mS, 

which is the reciprocal of 12.7+j5.8 Ω. 

Quiz 2 Suppose the input impedance is found to be 25 + j20 Ω and the transmission line has 

Z0 = 50 Ω and is 0.3625λ long. Find the load impedance. 

Example 7.5: Quarter-wavelength transformer Recall that when l = λ/4, Lin ZZZ /
2

0= , and 

thus on the Smith chart, it becomes zin = 1/zL or yin = zL. Therefore, the input impedance of 

the quarter-wavelength transformer can be found by rotating zL by π. For example, the short 

circuit is transformed to the open circuit and vice versa. 

The quarter-wavelength transformer has one significant application in matching load 

impedance ZL to a transmission line with characteristic impedance Z0. By inserting a quarter-

wavelength transformer with characteristic impedance 00 ZZZ L= between the transmission 

line and the load, the input impedance becomes Zin = Z0, thus the line is now matched. 

The Slotted Line A slotted line is a transmission line configuration (usually waveguide or 

coax) that allows the sampling of the electric field amplitude of a standing wave on a 

terminated line. With the device, the VSWR and the distance of the first voltage minimum 

from the load can be measured, and from this data the load impedance can be determined. 

Note that the load impedance is generally a complex number, two distinct quantities must be 

measured to determine the impedance. 

 Although the slotted line used to be the principal way to measure an unknown 

impedance at microwave frequencies, it has been superseded by the modern vector network 

analyzer in terms of accuracy, versatility and convenience. The slotted line is still of some 

use in certain applications such as high-millimeter wave frequencies or where it is desired to 

avoid connector mismatches by connecting the unknown load directly to the slotted line, thus 

avoiding the use of imperfect transitions. Another reason for studying the slotted line is that it 

provides an excellent tool for learning basic concepts of standing waves and mismatched 

transmission lines. 

 Assume that, for a certain terminated line, the VSWR on the line and lmin, the distance 

from the load to the first voltage minimum on the line, are measured. Recall that |Γ| = 

(VSWR - 1)/(VSWR + 1) and a voltage minimum occurs when 1)2( −=− lβθje , where θ is the 

phase angle of the reflection coefficient, 
θj

eΓ=Γ . The phase angle of the reflection 

coefficient is then min2 lβπθ += . Actually, since the voltage minima repeat every λ/2, any 

multiple of λ/2 can be added to lmin without changing the reflection coefficient, i.e., 
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)2/(2 min λβπθ n++= l . Thus, VSWR and lmin can be used to determine the reflection 

coefficient and the load impedance can be determined from the reflection coefficient. 

 
Figure 10: A slotted line 

Example 7.6 Impedance measurement with a slotted line The following two step procedure 

has been carried out with a 50-Ω coaxial slotted line to determine an unknown impedance: 

1. A short circuit is placed at the load plane, 

resulting in a standing wave on the line with 

infinite VSWR and sharply defined voltage 

minima as shown in figure (a). Voltage minima 

are recorded at z = 0.2, 2.2, 4.2 cm. 

2. The short circuit is replaced by the unknown 

load. VSWR=1.5 is measured and voltage 

minima are recorded at z = 0.72, 2.72, 4.72 cm. 

Find the unknown impedance. 

Solution Since the voltage minima repeat every  

λ/2, λ = 4.0 cm. In addition, because the reflection coefficient and the input impedance also 

repeat every λ/2, we can consider the load terminals to be effectively located at any of the 

voltage minima locations listed in step 1. Thus, if we say the load is at 4.2 cm, then the next 

voltage minimum away from the load occurs at 2.72 cm, giving lmin = 4.2 – 2.72 = 1.48 cm = 

0.37λ. Therefore, 

;2.0
1

1
=

+
−

=Γ
VSWR

VSWR
 

πππβπθ 48.037.0)2(22 min =+=+= l 

1996.00126.02.0 48.0 je j +==Γ→ π  

The load impedance is then 

Ω+=
Γ−
Γ+

= 7.193.47
1

1
0 jZZL . 

To use the Smith chart, first noticing 

that the voltage minimum is located on 

the horizontal axis to the left of the 

origin. Thus, beginning with this point 

and then moving 0.37λ toward the load, 

we can get zL = 0.95 + j0.39 and thus ZL 

= 47.5 + j19.5 Ω. 

 


