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Network Theorems 

1 Superposition Theorem 

The basic principle of superposition states that, if the effect produced in a system is directly 

proportional to the cause, then the overall effect produced in the system, due to a number of causes 

acting jointly, can be determined by superposing (adding) the effects of each source acting separately. 

This principle is only applicable to “linear” networks and system.  

Consider the circuits below. In Fig. 1, clearly the 

voltage across the resistor and the current are 

given by 

RVRVRVIVVV RR ///; 2121 −==−= . 

Now, applying the superposition theorem yields 

RVRVIII // 2121 −=+= , 

i.e., the sum of the currents due to two sources. 

Question Is the superposition theorem applicable 

to the power as well? 

Example 1 Verify the superposition theorem. 

 

 

 
Fig. 3: Example 1 problem 

 

 

 

 

 

Example 2 Verify the superposition theorem. 

 
Fig. 4: Example 2 problem 

 

 

 

 

 

 

 

 

2 Reciprocity Theorem 
Consider two loops A and B of a network N where an ideal voltage source V in loop A produces a 

current I in loop B, then the network is said to be reciprocal if an identical source in loop B produces 

the same current I in loop A. In short, a linear network is said to be reciprocal if it remains invariant 

due to the interchange of position of cause (source) and effect (linear elements) in the network. 
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Example 3 Verify the reciprocity theorem. 

 

 
Fig. 5: Example 3 problem 

3 Thevenin’s Theorem 

This theorem states that a linear circuit containing one or more sources and other linear elements can 

be represented by a voltage source VTH in series with an impedance ZTH. VTH is the open-circuit 

voltage between the terminals of the network and ZTH is the impedance measured between the 

terminals of the network with all sources removed(but not their impedances). This is also called the 

voltage source equivalent circuit. 

 

Fig. 6: General network 

� 

 

Fig. 7: Equivalent circuit 

Example 4 Find the Thevenin’s equivalent circuit. 

 
Fig. 8: Example 4 problem 

Example 5 Find the Thevenin’s equivalent circuit. 

 
Fig. 9: Example 5 problem 
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4 Norton’s Theorem 
Norton’s theorem says that the linear network consisting of one or more independent sources and 

linear elements can be represented by a current source ISC and an equivalent impedance ZTH in parallel 

with the current source. ISC is the short-circuit current between the terminals of the network and ZTH is 

the impedance measured between the terminals with all sources removed (but not their impedances). 

This is also called the current source equivalent circuit. 

Example Repeat examples 4, 5 using Norton’s equivalent circuits. 

 

 

 

 

 

 

 

 

 

 

5 Millman’s Theorem 
Let Vi (i=1,2,…,n) be the open-circuit voltages of n voltage sources having internal impedances Zi in 

series, respectively, as shown in Fig.10. Suppose these sources are connected in parallel, then they 

may be replaced by a single ideal voltage source V in series with an impedance Z, where 
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Example 6 Find the current I in Fig. 11. 

 

 
Fig. 10: Millman’s Theorem 

 

 

 
Fig. 11: Example 6 problem 
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6 Maximum Power Transfer Theorem 
Maximum power will be delivered to a network, to an impedance ZL if the impedance of ZL is the 

complex conjugate of the impedance Z of the network, measured looking back into the terminals of 

the network. 

Derivation  

 

 

 

 

 

 

 

Example 7 A circuit model of a transistor driven by a current source i(t) is shown in Fig. 12, where RS 

is the source internal impedance and hi,hr,hf and 1/h0 are transistor parameters. Find Thevenin’s and 

Norton’s equivalent circuits and derive the condition of maximum power transfer. 

 

Fig. 12: Example 7 problem 

 

 

 

7 Substitution Theorem 
Sometimes, it is convenient to replace an impedance branch by another branch with different circuit 

components, without disturbing the voltage-current relationship in the network. The condition under 

which, branch replacement is possible, is given by the substitution theorem. It states that any branch 

in a network may be substituted by a different branch without disturbing the voltages and currents in 

the entire network, provided the new branch has the same set of terminal voltage and current as the 

original branch. 

The substitution theorem is a general theorem and is applicable for any arbitrary network. It is very 

useful in circuit analysis of networks having one non-linear element. Also, it is often used to replace 

the effect of mutual inductance. 

Example 8 Find the substitutions for xy branch. 

 
Fig. 13: Example 8 problem 
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8 Compensation Theorem 
In some problems, we are interested in finding the corresponding changes in various voltages and 

currents of a network subjected to a change in one of its branches. The compensation theorem 

provides us a convenient method for determining such effects. 

In a linear network N, if the current in a branch is I and the 

impedance Z of the branch is increased by ∆Z, then the 

increment of voltage and current in each branch of the 

network is that voltage or current that would be produced by 

an opposing voltage source of value Vc (=I∆Z) introduced into 

the altered branch after the modification. The compensation 

theorem is based on the superposition principle, and the 

network is required to be linear. 

Consider the network N in Fig. 14, having branch impedance 

Z, then 
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Let δZ be the change in Z. Then I’ (the new current) can be 

written as 
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as shown in Fig. 15. It follows that 
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where
 

ZIVC δ= , which is shown in Fig. 16. 

Example 9 Verify the compensation theorem when R is 

changed from 4 to 2 Ω. 

 

Fig. 17: Example 9 problem 

 

 

 

 

 

 

 

 
Fig. 14: Original Thevenin’s equivalent 

circuit 

 
Fig. 15: Load is changed by δZ. 

 

Fig. 16: Equivalent circuit by the 

Compensation theorem 
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9 Tellegen’s Theorem 
Tellegen’s theorem is based on two Kirchhoff’s laws and is applicable for any lumped network having 

elements which are linear or non-linear, active or passive, time-varying or time-invariant. It is 

completely independent of the nature of elements and is only concerned with the graph of the network. 

Consider an arbitrary lumped network whose graph G has b branches and n nodes. Suppose, to each 

branch of the graph, we assign arbitrarily a branch voltage vk and a branch current ik for k = 1,2,…,b 

and suppose that they are measured with respect to arbitrarily chosen associated reference directions. 

If the branch voltages v1, v2, …, vb satisfy all the conditions imposed by KVL and if the branch 

currents i1, i2, …, ib satisfy all the constraints imposed by KCL, then 

'.,,0)'()(
1

tttitv
b

k

kk ∀=∑
=

 

It is noted that in a linear time-invariant network composed of energy sources and passive elements 

under steady-state sine-wave excitation, the conservation of power is depicted by Tellegen’s theorem 

with t = t′. 

Proof Consider a network N consisting of b branches and n nodes, let A = [akj] be the incidence matrix, 

whose elements are given by 
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Then KCL can be written as 

0iA = , 

where i = [i1 i2 … ib]
T
 denotes the branch-current vector. Note that A is an n×b matrix. Also, the 

branch voltages v = [v1 v2 … vb]
T
 are related to the node voltages vn = [vn1 vn2 … vnn]

T
 by 

n

T vAv = . 

Therefore, ( ) 0)'()(
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Furthermore, consider another network N′, which has the same topological configuration, the same 

references for branch currents and voltages, and the same numbering for the branches as the network 

N. Consequently, both networks have the same incidence matrix A, and it follows that 

0iA =' ; 
n

T '' vAv = , 

where i', v', v'n denote branch current vector, branch voltage vector and node voltage vector, of the 

network N′, respectively. Therefore, 

( ) 0''')'(')(
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which implies that Tellegen’s theorem is applicable to two networks with the same topological 

configuration as well. Furthermore, it can be easily shown that 

0'''' ==== iviviviv
TTTT

. 

Example 10 Find all branch currents and voltages for both networks N1, N2 in Fig. 18, 19. Then verify 

Tellegen’s theorem. 
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Fig. 18:  Network N1 in example 10 problem Fig. 19: Network N2 in example 10 problem 



Network Theorems 

 

7 

 

 

 

 

 

 

 

 

 

Example 11 Verify Tellegen’s theorem for networks N1, N2 in Fig. 20, 21. Assume steady-state 

conditions. 
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Fig. 20:  Network N1 in example 11 problem  Fig. 21: Network N2 in example 11 problem 

 

 

 

 

 

 

 

 

 

Example 12 Consider two networks with the same topology and, inside their respective two-port 

boxes, the same set of elements—passive complex impedances zn(s). The outside elements differ—an 

open circuit at port 0 and a source at port 1 in one case, and a source at port 0 and a short circuit at 

port 1 in the other case. 

 
Fig. 20: Networks for example 12 

Choosing the currents from network a and the voltages from network b for Tellegen’s Theorem, 
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Choosing the voltages from network a and the currents from network b for Tellegen’s Theorem, 
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Therefore we have a reciprocity of the reverse open-circuit voltage transfer equaling the forward 

short-circuit current transfer: 
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