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Resonance 

1 Introduction 

In physics, resonance is the tendency of a system (usually a linear system) to oscillate with larger 

amplitude at some frequencies than at others. These are known as the system's resonant frequencies.  

At these frequencies, even small periodic driving forces can produce large amplitude oscillations. 

Resonances occur when a system is able to store and easily transfer energy between two or more 

different storage modes (such as kinetic energy and potential energy in the case of a pendulum). 

However, there are some losses from cycle to cycle, called damping. When damping is small, the 

resonant frequency is approximately equal to a natural frequency of the system, which is a frequency 

of unforced vibrations. Some systems have multiple, distinct, resonant frequencies. 

Example 

Mechanical and acoustic resonance 

• A pendulum, a playground swing 

• The timekeeping mechanisms of all modern clocks and watches: the balance wheel in a mechanical 

watch and the quartz crystal in a quartz watch 

• Acoustic resonances of musical instruments and human vocal cords 

Electrical resonance 

• Electrical resonance of tuned circuits in radios and TVs that allow individual stations to be picked 

up 

Optical resonance 

• Creation of coherent light by optical resonance in a laser cavity 

Atomic, particle, and molecular resonance 

• Material resonances in atomic scale are the basis of several spectroscopic techniques that are used 

in condensed matter physics. 

• Nuclear Magnetic Resonance (NMR), Magnetic Resonance Imaging (MRI) 

2 Series RLC Resonant Circuit 

In an RLC circuit, the resonance is the state at which the reactance of the inductor, XL, and the reactance 

of the capacitor, XC, are equal. It is used in various applications, including filters, oscillators, frequency 

meters and tuned amplifiers. 

A series RLC resonant circuit is shown in the figure below. The governing equation is given by 
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Using the voltage across the capacitor vC(t) as the 

unknown, the above differential equation can be 

rewritten as 

)()(
)()(

2

2

tvtv
dt

tdv
RC

dt

tvd
LC SC

CC =++ or 
 

 

)(
)(

)(
)(

2
)()()()( 2

0

2

02

2

2

2

tv
LC

tv
tv

dt

tdv

dt

tvd

LC

tv

dt

tdv

L

R

dt

tvd
S

S
C

CCCCC ωωα ==++=++
 

where LR 2/=α ; LC/10 =ω which are called damping attenuation and natural (resonant) 

frequency.  
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α is called the attenuation, and is a measure of how fast the transient response of the circuit will die 

away after the stimulus has been removed. ωr is the angular resonance (natural) frequency. 

For the case of the series RLC circuit these two parameters are given by: 

LR 2/=α ; LCr /1=ω . 

The ratio of the two parameters above, which is defined as the damping factor, ζ, i.e., 
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The differential equation above has the characteristic equation: 
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The general solution is given by 
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21)( += , where A1, A2 are constants determined by enforcing the boundary conditions. 

The overdamped response (ζ > 1) is given by 
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and it is a decay of the transient current without oscillation. 

The underdamped response (ζ < 1) is given by 
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where 21 ζωω −=
rd , which is called the damped resonant frequency. 

The critically damped response (ζ = 1) is given by 
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which represents the fastest decay without 

oscillation. The figure in the right shows the step 

response for numerous ζ assuming L = C = 1. 

For the steady state assuming sinusoidal excitation, 

the input impedance is given by
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At the resonance, the reactance of the   inductor and 

the reactance of the capacitor cancel each other 

resulting in the input impedance being the minimum, 

i.e., Zin = R as shown in the figure below. 

Three frequency ranges can be defined as follows: 

Low frequency range (f < fr) 

Resonant frequency (f = fr) 

High frequency range (f > fr) 

where fr denotes the resonant frequency, given by 

)2/(1 LCf r π= . Clearly, the current reaches the 

maximum at this frequency assuming a constant 

voltage source. 

 

Question Sketch the phase of VR, VL, VC and Vtotal with respective to that of I for all frequency ranges. 
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where RIP
Rav

2
= : dissipated power in the resistor, LIW

LL

2
= : magnetic energy stored in the 

inductor, CIW
CC

22
/ω= : electric energy stored in the capacitor (assuming the rms value). Thus, Q 

factor is a measure of the loss of a resonant circuitlower loss implies higher Q. At the resonance 

frequency, the Q factor becomes 
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For the low frequency range, Q =  

For the high frequency range, Q = 

Resonance response and bandwidth 

Typically, bandwidth is defined as the frequency range where the average power delivered to the circuit 

is greater or equal to one-half that delivered at the resonance. The frequency response of a series 

resonant circuit is shown below. Here L, C are assumed to be constant, and R is calculated from Q. 

 
It can be observed from the figure that 

1. Bandwidth increases with Q decreases. 

2. Resonant slope decreases with Q decreases. 

3. Magnitude response at fr decreases with Q decreases. 

Now, consider the behavior of the input impedance of a series resonant circuit near its resonant 

frequency. Let ωωω ∆+= r , where ∆ω is small. 
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where Qr is the Q factor at the resonant frequency. Hence, the slope of reactance near the resonance 

frequency (|dX/df|) is 4πL while the slope in the low frequency range is 1/(2πC) and that in the high 

frequency range is 2πL, since both inductor and capacitor affect the behavior near fr. 
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Now consider the bandwidth, when the frequency is such that |Zin|2=2R2 (or X = R), the power 

delivered to the circuit is one-half that at the resonance frequency. If BW = fu-fl is the bandwidth, then  

∆ω = 2π( fu-fr) = 2π BW/2 at the upper band edge. Thus, 
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Question Use Taylor’s series expansion to show that the slope of reactance near the resonance frequency 

(|dX/df|) is 4πL. 

 

3 Parallel RLC Resonant Circuit (Anti-resonant circuit) 

A parallel RLC resonant circuit is shown in the figure below. The input impedance is given by 
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At the resonance, the reactance of the   inductor 

and the reactance of the capacitor cancel each 

other resulting in the input impedance being the 

maximum, i.e., Zin = R as shown in the right 

figure. The resonant frequency is given by 

LC
fr π2

1
= as in the case of series RLC 

circuits. Clearly, the voltage reaches the 

maximum at this frequency assuming a constant 

current source. 

Question Sketch the phase of IR, IL, IC and Itotal 

with respective to that of V for all frequency 

ranges. 

It is more convenient to use the input admittance:
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where G=1/R, and the duality relationships (V↔I, Z↔Y, R↔G, L↔C, C↔L). Then, the approach used 

in the case of series RLC circuits can be applied. 

Quality factor (Q factor) Since RVP Rav /
2

= , CVW CC

2
= and LVW LL

22
/ω= (assuming the rms 

value), at the resonance frequency the Q factor becomes 
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For the low frequency range, Q =  

For the high frequency range, Q = 

Resonance response and bandwidth 

It can be shown that a parallel RLC circuit’s behavior near the resonance frequency is similar to that of 

a series RLC circuit. Consider the behavior of the input admittance of a parallel resonant circuit near its 

resonant frequency. Let ωωω ∆+= r , where ∆ω is small. 
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where Qr is the Q factor at the resonance frequency. Hence, the slope of susceptance near the resonance 

frequency (|dB/df|) is 4πC while the slope in the high frequency range is 2πC. 

Now consider the bandwidth, when the frequency is such that |Yin|2=2G2 (or B = G), the power 

delivered to the circuit is one-half that at the resonance frequency. If BW = fu-fl is the bandwidth, then  

∆ω = 2π( fu-fr) = 2π BW/2 at the upper band edge. Thus, 
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4 Multiple Resonance 

Multiple resonance is desirable when a device operates in various 

frequency bands. For example, consider the circuit in the right figure. 

The impedance of the circuit is given by 
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If we plot the reactance, two resonant frequencies can be observed. The 

frequency at which the reactance is zero is called zero frequency, while the 

frequency at which the reactance is infinity is called pole frequency. Two 

resonant frequencies are given by 
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Therefore, the impedance can be rewritten as 
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where fr1 is the zero frequency, and fr2 is the pole frequency. 

Now consider the circuit in the right figure. The admittance of the circuit 

is given by 
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thus the impedance can be written in the form: 
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Observe the two forms of impedance equations, one can conclude the general form of a lossless multiple 

resonant circuit’s impedance equation as follows: 
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where x is either ω or 1/ω and H is a constant. 

5 Network Functions 

To analyze more complicated networks, it is more convenient to use the Laplace transformation. It 

follows that the impedance (or admittance) is expressed in “transform” domain (or s domain). For one-

port network, the input impedance can be given by the following function: 

driving-point impedance function  
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Likewise, the input admittance is given by 
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For two-port networks, four transfer functions are defined as follows: 
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Note that, in general, Z12 ≠ 1/Y12. 

Examples 

 

 

The general form of network functions is as follows: 
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which is a rational function of s and m, n are integers. 

Example The driving-point impedance function of the ladder network shown below is given by 
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Poles and Zeroes 

The network function is a ratio of two polynomials given by 
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where H = an/bm is a constant known as the scale factor, z1,…,zn, which are roots of p(s)=0, are called 

zeroes of N(s) while p1,…,pm, which are roots of q(s)=0, are called poles of N(s). A dissipationless 

(lossless) network has only imaginary poles and zeroes. The necessary conditions for driving-point 

functions are 

1. The coefficients in the polynomial p(s) and q(s) must be real and positive. 

2. Complex and imaginary poles and zeroes must be conjugate. 

3. (a) The real part of all poles and zeroes must not be positive. 

(b) If the real part is zero, then that pole or zero must be simple. 

4. The polynomials p(s) and q(s) must not have missing terms between the highest and lowest 

degree, unless all even or all odd terms are missing. 

5. The degree of p(s) and q(s) may differ by either zero or one only. 

6. The terms of lowest degree in p(s) and q(s) may differ in degree by one at the most. 

Assume that all poles are simple, then the function N(s) can be rewritten as 
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where r(s) is the quotient of p(s) divided by q(s) (p(s) = r(s)q(s)+m(s)) and ki is the residue at the pole 

pi given by 
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 If the degree of q(s) is greater than that of p(s), then r(s) = 0. 

6 Foster’s Reactance Theorem 

For a positive real rational function Z(s)=1/Y(s) to be realizable as the driving point impedance of a 

lossless one-port, the necessary and sufficient condition is that it should be expressible in the form 
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where an and bm are constants. It follows that 

1. 0 ≤ ω1 < ω2 < ω3 (Interlacing poles and zeros, all on jω axis) 

2. Foster's Theorem further restricts the degrees of the numerator, n, and denominator, m, by 

requiring that they must differ by unity. In other words, if the numerator is an even degree, 

the denominator is odd, and vice versa. 

From these conditions, the following properties can be deduced: 

1. Unity degree difference between numerator and denominator implies that Z(s) must have either 

a single pole or a single zero at both s=0 and s=∞. Therefore the function Z(s) or Y(s) will 

belong to one of the four types: 

a. Pole at s=0 and pole at s=∞ 

b. Pole at s=0 and zero at s=∞ 

c. Zero at s=0 and pole at s=∞ 

d. Zero at s=0 and zero at s=∞ 

2. Z(jω) is purely reactive. Therefore, it can be written as 

     
)()( ωω jXjZ = , 
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where X(ω) is the input reactance with 
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Alternation of poles and zeros leads to the property 
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In other words, the reactance X(ω) is always an increasing function of frequency. The rational 

functions satisfying these requirements are called Foster functions. 

3. Since all poles of Z(s) and Y(s) are on the s=jω axis, they can always be expanded as 
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where the constants "k" and "h" are residues of the respective poles. Physically, they correspond to 

simple network elements, as follows: 

• If Z(s) has a pole at s=0, it can be extracted as a series capacitor: 
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• If Z(s) has a pole at s=∞, it can be extracted as a series inductor: 
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• If Z(s) has a pole at s=jωi, it can be extracted as a parallel resonator in series: 
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• If Y(s) has a pole at s=0, it can be extracted as a shunt inductor: 
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• If Y(s) has a pole at s=∞, it can be extracted as a shunt capacitor: 
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• If Y(s) has a pole at s=jωi, it can be extracted as a series resonator to ground: 
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Note that if a pole of Z(s) at s=0 or s=∞ is extracted, a zero appears at that frequency automatically in 

the remaining impedance function, which acts as a pole of the remaining admittance function. Hence, 

given Z(s), one can synthesize a variety of circuits all having the same input impedance but with 

different structures by extracting elements in different orders from impedance or admittance functions. 

The resonance components shown above are called the canonical forms, which are used for synthesizing 

Foster’s networks. 

 Since there are four possible reactance responses (given by a-d of 1) and each response can be 

synthesized by both series and parallel networks, hence 8 Foster’s networks are valid. 

Example Synthesize the network with the reactance response shown below. 
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7 Cauer or Ladder Form 

Recall the ladder network previously shown, using the previous result with Zk=aks and Yk=bks, the 

driving-point impedance function is then given by 
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As s=jω, obviously Zk represents the reactance of a coil of inductance ak [H], and Yk the susceptance of 

a capacitor of capacitance bk [F]. If we assign Lk=ak and Ck=bk, we get the ladder network shown below, 

which is the realization of the Cauer first form for Z(s). 

 
A study of this network reveals that 

a) Z(s) possesses poles both at the origin and infinity. 

b) Z(s) will have a zero at the origin when Cm (the last element) is short-circuited. 

c) Z(s) will have a zero at infinity when L1 (the first element) is short-circuited. 

d) The impedance function will have zeroes both at the origin and at infinity when both L1 and Cm 

(the end elements) are eliminated by short-circuiting. 

An alternative Cauer representation (Cauer second form) is obtained by writing the polynomials in Z(s) 

in ascending powers of s: 
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Carrying out the process of division and inversion, we can write 
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The network corresponding to this continued fraction is shown in the figure below. This form is called 

the Cauer second form of the driving-point impedance. 

 
This network exhibits poles both at the origin and at infinity. It will have a zero at the origin when C1 

is short-circuited. Zero of Z(s) at infinity requires that Lm be deleted. Zeroes of Z(s) at both the origin 

and at infinity will be obtained when both C1 and Lm are removed by short-circuited. 

Example Determine the Foster and Cauer forms of realization of the given driving-point impedance 

function 
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