Filters

0 Overview

A filter is a two-port device used to control the frequency response at a certain point in a system by
providing transmission at frequencies within the passband of the filter and attenuation in its stopband.
It can be classified by magnitude response as low-pass filter (LPF), high-pass filter (HPF), band-pass
filter (BPF), and band-stop filter (BSF). It has wide range of applications including:

e Desired frequency band selection and unwanted band rejection (i.e., SNR improvement and

Interference reduction)
e Noise reduction
e Channel selection in mobile and satellite communications

1 Image Impedance

In a two-port network, if two impedances Zi; and Zy; are such that Zi; is the driving point impedance at
port 1 with impedance Z; is connected across port 2 and Zy; is the driving point impedance at port 2
with impedance Zi; is connected across port 1, then the impedances Zi; and Z»; are called the image
impedances of the network. For symmetrical network, image impedances are equal to each other, i.e.,
Zii = Z»;, and is called the characteristic or iterative impedance Zo.
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the image impedance at port 1 can be rewritten as
Zli = Z[oczi‘vc :
Likewise, since the open-circuit output impedance Z,.. and the short—circuit input impedance Zs. are
given by
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the image impedance at port 2 can be rewritten as
ZZi = VZOOCZOSC :

2 Symmetric T and 1t networks

Consider a T network interposed between a generator with internal impedance Z;; and a load
impedance of Z;, as shown in Fig. 2. It is desired that the maximum power transfer occurs, i.e., the
impedance at 1,1’ terminals into which the generator supplies power be equal to Zi, and the
impedance at 2,2’ terminals be equal to Z,i. Hence,
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Note also that

2, =2, Ly s Ly =\ 2y Ly, » as before.

When Z=2,, i.e., two series arms of a T-network are equal,
the network is said to be symmetric. For symmetric
networks, Zii = Z = Zo (characteristic impedance). Filter
networks are usually set up as symmetrical sections of T or ©t
types (Fig. 3(a), Fig. 4(a)). T section can be considered as
built up of unsymmetrical L-half sections (Fig. 3(b)). For the
T network shown in Fig. 3(a) terminated by its characteristic
impedance Zy, the input impedance is given by
—é+ Z,(Z,12+Z,)
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With proper choice of Z, it is possible to make Z;i»=Z,
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Fig. 2: A T-network interposed between load
and source
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Hence, for symmetrical T-section, Z is given by Fig. 3: A symmetrical T-section
Zoy =AZ2 14+ 2,2, =\|Z,Z,(1+ Z,14Z,) .
Again, from open and short-circuit measurements for the symmetrical T section,
27,12
Zloc = ZZ()C = Zoc = Zl /2 + ZZ’ Zlvc = ZZS‘C = Zvc = Zl /2+# and Zloczlvc = le /4+ ZIZZ = Z(Z)T
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Thus, Z,, =Z,Z.. .
Likewise, T section can be considered as built up of © O
unsymmetrical L-half sections (Fig. 4(b)). For the =
network shown in Fig. 4(a) terminated by its 27, 27
characteristic impedance Zp, the input impedance is
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It can also be shown that

ZO/r = \/ZOCZXC .

Fig. 4: A symmetrical & -section



A series connection of several T or n networks leads to so-called ladder networks, as shown in Fig. 5
(a)-(d). Terminal half-section matching is obtained by connecting the ends of the T-network with the
half sections of the n-network (Fig. 4 (b)), i.e., connect terminals 2,2’ of Fig. 4(b) with terminals a,a’
of Fig. 5(a) and 3,3’ with b,b’. Similarly, for the m-network of Fig. 5(c), terminal matching is to be
done by the half-sections of the T-network (Fig. 3(b)), i.e., connecting terminals 2,2’ to c,c’ and 1,1’
tod,d’.
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Fig. 5: Ladder networks made of T-sections and m-sections.
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3 Propagation Constant
Under Z termination, input and output impedances are equal, i.e.,

Z,=V, /1, =V,I(-1,),

then V,/V,=1,/(-1,)=¢",

where yis a complex number and is defined as

y=a+jp,

where y, «, [ are propagation constant, attenuation constant, and phase constant, respectively.
Furthermore,

VIV, =11(-1,)=AZB=|I,/L|e"” =

For n number of sections cascaded, with all of them having the same Z, value, the ratio of currents can
be written as

inx...xi_l_zzeyl Xe;/l X"'Xei/” 267/ .

- 12 - 13 - In - In

The overall propagation constant ycan be expressed as

Y=ty ey,

n—=1 __

4 Properties of Symmetrical Network

For a symmetrical T-section terminated with a load Z and fed with a generator Ey, as shown in Fig. 6,
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Thus,

Applying the previous result Z, =/Z} /4+Z,Z, = \/lez (+Z,/4Z,) yields
[z, -z, 12f =22 ("~ ~ 22,7 1)+ 2 14=27 14+ 2,2,
After simplification,

Z,(e’ =1)> =Z,e” =0or e —=2¢” +1=(Z,/Z,)e’ . Hence,

e’ +e’

=coshy=1+Z2/22,.

Since, cosh” y —sinh® y =1,

sinh® y =cosh’ y —1=(1+Z,/2Z,)* —1=le/4Zf +Z,1Z, :ZOZ/ZZ2 —sinhy=2,/7,,
4
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Using the half-angle identity,

smh(—) \/ cosh(}/) 1)] \/1[

and tanh y =
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So, y =In| 1+— (Z‘j +£
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5 Filter Fundamentals

The purpose of a filter network is to pass a desired frequency band without loss and stop or
completely attenuate all undesired frequency bands. Since ¥y =a + jf, @ = 0 means there is no

attenuation in transmission with only a phase shift, i.e., I/i| = Il>| and the operation is in the pass band.
If &> 0, then || > IL5l, i.e., the attenuation occurs and the operation is in the stop band.

Recall that
sinh(l) = K28 = sinh(ﬂj =sinh @ cos ﬁ + jcosh @ sin ﬁ .
2 4z, 2 2 2 2 2

Case I When Z; and Z, are of the same type of reactances, then Zi/4 Z, > 0 and sinh()/2) is real, i.e.,
@A) cosh(a/2)sin(f/2)=0 or sin(f/2)=0;=nn,n=0,24,...

(ii) sinh(a/2)cos(B/2)=,Z,14Z,.



Therefore, cos(f/2) = 1 as sin(f5/2) =0. Hence,
sinh(a/2)=+/Z,/14Z,; a=2sinh™ \|Z,/4Z, .

Case Il If Z; and Z are of the opposite type of reactances, then Zi/4 Z; is negative, i.e., Zi1/4 Z, < 0 and
obviously, 4/Z, /4Z, is imaginary. Therefore, the following conditions must be satisfied:

(i) jeosh(a/2)sin(f/2)=,2,14Z,
(ii) sinh(a/2)cos(f/2)=0

Two conditions may arise

(a) sinh(a/2)=0,i.e.,a =0when £ # 0and

jsin(B/2)=./Z,14Z, - cosh(a/2)=1.

This signifies the region of zero attenuation or pass band which is limited by the upper limit of the
sine term, i.e., sin(f/2) = I11, or it is required that

-1<Z,/4Z, <0.
The phase angle in the pass band is given by

B=2sin"'\-Z,/4Z, .

(b) cos(f/2) = 0; therefore sin(f5/2) = +1; = (2n-1)x when a# 0 and
jeosh@/2)=4]Z,14Z, —cosh(@/2)=+-Z,/4Z,; a =2cosh™ \|-Z,/4Z, .

Since hyperbolic cosine has no value below 1, the condition for stop band is Zi/4 Z> < -1. The
frequencies at which the network changes from pass band to stop band and vice versa are called the
cut-off frequencies. These frequencies occur when

Z,14Z,=0,0rZ, =0 and Z,14Z,=-1,orZ, =-4Z,,

where Z; and Z, are of the opposite type of reactances.

For symmetrical T- and n-network made up entirely of pure reactances, Z is given by

Zo =~ X, X,(1+ X, 14X,): Z,, =—X,X, 1 Z,; .

Table 1 summarizes the two bands, namely the pass band and the stop band with respect to the
different values of X1/4X5.

Table 1
X1/4X, 0to-1 -1 to -
Band Pass Stop
a 0 2cosh™ /X, /4X,
Yij 2sin”' /X, /4X, n
Zot positively real purely reactive

In a pass band, Z is real and positive. If the network is terminated with a resistive Zy = Ro, then the
input impedance is Ry and the network will accept and transmit power to the resistive load without
loss. If the network is fed by a generator having an internal impedance Ro, then the system will be
matched and the maximum power transfer occurs. In a stop band, Z is reactive. If the network is
terminated in its reactive Zo, it may transmit voltage or current with 90° phase difference between
input and output with considerable attenuation.

6 The constant-k Filters

In constant-k filters, Zi and Z, are of opposite reactances. Then
ZZ,=k*,

where k is a constant.

6.1 Low-Pass Filters




For low-pass filters, Zi=jwL, Z>=1/jwC, then
ZZ,=LIC=R]=k". L/2 L2
The cut-off frequency can be found from

z L °L 2 C
S R— ja)Cza) C=1—>a)c=—.

4z, 4 4 N LC

. D o
Fig. 7 shows the low-pass T-section filter. Fig. 7 Low-pass T-section

The characteristic impedance of the T-section and m-section are given by

Zoy = (LIC)Y1-&*LC14) = R\[1—(@/ ®,)* = R\[1—(f/ f.)* and

Z, =R I1-(f1f)".

Design Procedure To determine the values of L, C, the value of Ry, i.e., the characteristic impedance
at zero frequency, and the cut-off frequency are required. Then, from

L/C=R} and VLC =1/7f.,

L, C can be calculated.

Low-pass Filter Example Design a low-pass filter with cut-off frequency of 1 MHz, and the
characteristic impedance of 100 2.

low-pass filter : m = 1 : Characteristic Impedance
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N . low-pass filter : m = 1 : frequency response
low-pass filter : m = 1 : attenuation & phase constants 0 - —
I
‘ . Ao SR
| | |
5l __ Lo T [ | R
| | | |
| R REEEEES
| af - I L A
| G L o A
3 | = | | |
I B 0] M [ [ P S
| | | |
| B R REREEEES
| o I S 1\
l P E A .
: P I I .
. 1 I I
10° 10° 10° 10° 10° 10°
f[Hz]
6.2 High-Pass Filters
For high-pass filters, Zi=1/jwC, Z,=jwL, then o i I} o]
ZZ,=LIC=R]=k". 2 2C
The cut-off frequency can be found from L
Z, 11 1 1
— =—— - = 5 = 1 —> a)(? = . O o
4Z,  joL4joC  40’LC 24L

Fig. 8 High-pass T-section
Fig. 8 shows the high-pass T-section filter.
The characteristic impedance of the T-section and w-section are given by



Zy =(LICY1-1/40"LC) = R\1 = (@, /@)’ = R\l1=(f./ f)’ and

Z,, =Rk/\/1_(fc/f)2 .

Design Procedure To determine the values of L, C, the value of Ry, i.e., the characteristic impedance
at infinite frequency, and the cut-off frequency are required. Then, from

L/C=Rk2 and ~VLC =1/4xf,,
L, C can be calculated.

High-pass Filter Example Design a high-pass filter with cut-off frequency of 1 MHz, and the
characteristic impedance of 100 Q.

high-pass filter : m = 1 : Characteristic Impedance
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6.3 Band-Pass Filters
For band-pass filters, Z; is a series LC circuit, i.e., Zi=j (L - 20, 2C,
1/@C1), and Z, is a parallel LC circuit, i.e., Zo=jwL, // 1/joC L2 }—%—0
as shown in Fig. 9. The condition for the band-pass filter is
that both series and parallel LC circuits have equal resonant L, C,
frequencies, i.e.,
w.L,C, =1=w,L,C,or LC,=L,C,. Then, o o
L.(1-&’LC L Fig. 9 Band-pass T-section
ZZ,= 2 L 1)——2:R,f:k2.

C,(1-w’L,C,) C,
The cut-off frequency can be found from
Z,=-4Z, > 7 =-42Z,=-4R} > Z, =*j2R,.
Hence, Z; at lower cut-off frequency fi is equal to —Z; at upper cut-off frequency fy, i.e.,
l/wC -0l =0,L -1/0,C, o 1-0;L,C, = (0, | ®, ) w, L,C,-1).
Using @, =1/ L,C,yields

-, /o, =@, o, )0, o] -1)or ®, =00, .



Also, from
Z, =+j2R, - zl|w:w —Zl|w:w =4jR,,or o, L -1/ w,C,—(w,L, -1/ w,C,)=4R,,

one can derive the condition
w, -0, =2R,C,0; .
Design Procedure To determine the values of Li, Ci, L, and C,, one needs to specify the center

frequency, the bandwidth and the desired characteristic impedance, then using the following
procedures:

1. Determine C from w, — o, = 2RkC1a)§ .

2. Determine L; from L, =1/ w,C, .

3. Determine L, from L, = k>C}, since Lo/Ci= k.
4. Determine C; from C, =1/ w,L, .

Band-pass Filter Example Design a band-pass filter with center frequency of 100 MHz, the bandwidth
of 20 MHz, and the characteristic impedance of 100 Q.

band-pass filter : m = 1 : Characteristic Impedance
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band-pass filter : m = 1 : attenuation & phase constants band-pass filter : m = 1 : frequency response
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6.4 Band-Stop Filters (or Band-elimination filters, Band-rejection filters)

For band-stop filters, Z; is a parallel LC circuit, i.e., Zi=jwL: // L2 L./2
1/jwC,, and Z; is a series LC circuit, i.e., Zo=j (@l - 1/wC>), as

shown in Fig. 10. The condition for the band-stop filter is that

both series and parallel LC circuits have equal resonant 2C, L, 2C,
frequencies, i.e.,

o, L,C, =1=w,L,C,or LC, =L,C,. Then,
_ Ll(l_a)zLICl) L s
142 = 2 -4~ Rk =k".
C,l-w’L,C,) C,
The cut-off frequency can be found from

C
o I i O

Fig. 10 Band-stop T-section




Z,=—4Z, > 42} =2Z,=R; >Z,=%jR, /2.

Hence, Z; at lower cut-off frequency fi is equal to —Z at upper cut-off frequency fu, i.e.,
l/wC,-o,L, =o,L -1/©,C,,or 1-0,L,C, = (o, | 0, ), L,C,-1).

Using @, =1/L,C, yields

l-w; o] = (0, o, N0, | o; -1)or @, =00, .

Also, from

Z,=%jR 127, ~Z)
one can derive the condition

w, -0, =R,C,a. /2.

o =JR,,or w,L, -1/ 0,C, - (0, L, -1/w,C,)=R,,

Design Procedure To determine the values of Li, Ci, L,, and C,, one needs to specify the center

frequency, the bandwidth and the desired characteristic impedance, then using the following
procedures:

1. Determine C; from @, —®, = R,C,0; /2.
2. Determine L, from L, =1/w,C, .

3. Determine L, from L, = k*Cs, since Li/Co= k>.
4. Determine C, from C, = 1/a)02L1 .

Band-stop Filter Example Design a band-stop filter with center frequency of 100 MHz, the bandwidth
of 20 MHz, and the characteristic impedance of 100 Q.

band-stop filter : m = 1 : Characteristic Impedance
1000 ™ ™ T 1
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band-stop filter : m = 1 : attenuation & phase constants
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7 The m-derived T-section

The constant-k prototype filter section, though simple, has two major disadvantages, namely (i) the
characteristic impedance varies widely over the pass band so that impedance matching is not possible,
(i1) the cut-off rate is not appreciably high, i.e., the drop-off rate is not sufficiently fast. The cut-off



rate may be raised by cascading a number of constant-k sections in series, but this is not economical.
The m-derived filters are designed to achieve this objective.

The approach used here is to introduce a zero frequency into the impedance of the shunt arm.
At this frequency, denoted by f., the shunt arm becomes a short circuit and the attenuation becomes
infinity. If f. is chosen to be close to the cut-off frequency, then the cut-off rate can be raised. The
attenuation may be kept at high value throughout the stop band by cascading the constant-k prototype
section with the m-derived section. Now, consider the m-derived T-section, let us assume
Z'=mZ,,
where 0 < m < 1. Then, solving for Z>’ that achieves the same value of Zor yields

Zoy =NZ2 141 2,2, =\|Z,7 144 2,2, =2} 144+ mZ,2, or Z,'=22+

m dm

For a low-pass filter section, Zi=jwL, Z,=1/jwC, then
Zy=jmaL, Z=1/jmoC+(1-m?) jmaL/4m, as shown in Fig. 11.
The resonant frequency of the shunt arm becomes

1 _ 2 4 2
n 0 LC=1-> 0. = > = a)czor
(1-m)LC 1-m
@, =, /N1—m® , where @ is the cut-off frequency. o ImC o

Therefore, the smaller the value of m, the sharper the cut-off.

Notice that

EA NS N G W | S Vo 1S B ol (9 it )
m 4m jmwC  4m 4m joC m joC

the pass and stop bands can be characterized as follows:

(a) Passband —1<Z,/4Z, <0and a=0 .

Fig. 11 m-derived low-pass T-section

Z,'=

2 12

B=2sin" \[-Z,/4Z, :2sin‘1\/ mOLE _osin® mol o .

I=(-m") @/ @)) 1= -m*) (@ | 0?)
(b) Stop band -00<Z,’/47Z>’<-1 and f=2n-1)x.
For f. < f < fo,
a=2cosh™ \|-Z,/4Z, =2cosh™ mo/ o, _2cosh! M2/

J-(-m*)@* /) J1-(@* 1 @?)
For > f.

mo/ o, mo/ o,

a=2cosh™ \|Z,/4Z, =2cosh™ =2cosh”! ——<
b Ja=m’) @’ 1)) -1 J@ @)1

Similar analysis procedure can be applied to the m-derived high-pass T-section, as shown in Fig. 12.

Here, 0, = o N1—m’

Likewise, the m-derived band-pass T-section is shown in Fig. 13.

Question Find @, for the T-section in Fig. 13.

m-derived Low-pass Filter Example Design a low-pass filter o
with cut-off frequency of 1 MHz, and the characteristic st
impedance of 100 Q. Here, use m = 0.7. ot

low-pass filter : m = 0.7 : frequency response

le”|[dB]
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G
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1-m’

(o I O O O
Fig. 12 m-derived high-pass T-section Fig. 13 m-derived band-pass T-section

8 Termination with m-derived half sections

The m-derived T- or m-sections can be formed by the splitted m-derived half sections or L-sections, as
shown in Fig. 14. These m-derived half sections, having m = 0.6, are called terminating half sections.

mZ,\/2

2.3

O O

(a) (b) ©
Fig. 14 (a) m-derived T-section (b) m-derived m-section (c) m-derived half sections
Zobel discovered that an m-derived half section could be made to change its characteristics with
frequency in such a way that the filter is approximately matched to its load at all frequencies over
most of the pass band.
Now, the image impedance of the left half section at the 1,1’ terminals is given by

- _ la=mz,12m+27, Imf mz,12)
foetlse A-m*)Z,12m+2Z, I m+mZ, |2

where Z, = \/ Z,Z,/(0+Z,/4Z,) . The impedance of the left half section at terminal 2,2’ is
Zy =mZ, 12+ (1—m*)Z,12m+22, ImnZ,12 = \[2,2,(1+ Z,14Z,) = Z,, .

o

z, = =1+ a-m*z,142,]z,,.

2oc

The image impedance at 3,3’ terminals 5 Image impedance of m-derived section
is equal to Zor, and at terminals 4,4’ is i i i
equal to Zi;. For low-pass filters, using R e s
Zy, = RI\1=(f1 1)’ yields s
, _Rl-a-mr 1 1)) R Rt

i~ . | | |

JI=(f 117 S R A A A
The variation of image impedance as a % 25 - - :F - :+ - +: -
function of f/f. is plotted in Fig. 15. It is N A
seen that m = 0.6 half section has a | | | _
nearly constant value of Z;; can be LT e e T R e R
obtained over 85% of the pass band. ] i I o
Following the same procedure, the ! ! ;
image impedance for high-pass filters ] i e
can be given by 0 ! ! !
0 01 02 03

, _Rl=a-mys ]

§ \/ 1-(f.1f ) Fig. 15: Variation of image impedance of m-derived section

11



Fig. 16 summarizes the T- and m-sections used for low-pass and high-pass T-section filter designs.

8 Composite Filter Design

By combining in cascade the constant-k, m-derived sharp cut-off, and the m-derived matching
sections, one can realize a filter with the desired attenuation and matching properties. This type of
design is called a composite filter. Fig. 17 shows an example of composite filter design. The constant-
k sections, the m-derived section as well as the matching half n-sections are shown in Fig. 16.

Low-Pass High-Pass
Constant-k T section Constant-k T section
LR L2 2C 2C
(o T o o (o o WSS o, o o gp SRS
—it —o
—— iy L
o o} o— o)
Ry=+JLIC L=2Rylw, Ry=+LIC L=Ry2w,
(3)‘_=2/\/l_,c C=2/ch0 w, = le'\/-LE C= l/zll".Ro
m-derived T section m-derived T section
mL/2 mL/i2 2CIm 2C/m
Y Yo o {} {} o
mC
-m? Lim
(1 -m*) i
4m 1 o)
o o) o —= o
L, C Same as constant-k section L, C Same as constant-k section
V1 - (o /0,)? for sharp-cutoff 1 - (w,./w_)? for sharp-cutoff
m= m=
0.6 for matching 0.6 for matching
Bisected-7r matching section Bisected-7r matching section
mL{2 mL/f2 2CIm 2CIm
- o I o -0 I o
© I =0 T° 1 ]
me mC
N 2 2 : : 2LIm 2LIm :
Ry (1 —m’) Uom). 2 & R - o R
2m 2m = ——
(1 =m=) (1 —m*)
- & 5 1 oo T
Z ir Z ir
Fig. 16 Summary of composite filter design
Matching High-f Sharp Matching
section cutoff cutoff section
C m=06 Constant m=06 O

0.6

~Ry —» 1 k e 1 -—-R,
Zy Zir Ziy

Fig. 17: A four-stage composite filter
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9 Reactance Plot
Fig. 18 shows a typical plot of reactances as a function of frequency for low-pass, high-pass, band-
pass, and band-stop constant-k filters. Likewise, Fig. 19 shows reactance plot for m-derived filters

when m = 0.7.

low-pass filter : m = 1 high-pass filter
2
R [ e
oF T ______ % ,,,,,,,,,,,,
< < l
I — -+
4 |
0.5 1 1.5

tf,
band-stop filter

> I ¥ > I I A
: i I I ’,l'
I | s
| i | »~
| k | P
I o I . I
I ! I
I |

27

|
I
I
I
I
I
I
[T ok ’
X Qi F i X 0= - ¥ - -
1 K |
i R4 |
: e I

Fig. 18: Reactance plot for constant-k filters. The solid lines denote X, the dash-dot lines denote X»
and the dash lines denote —47,.

low-pass filter : m = 0.7 high-pass filter
6 2

|

|

|

4 7777777777777777777777777 |

PR wgmammt

T

|

|

|

|

-5 il |
0.9 0. 1

Fig. 19: Reactance plot for m-derived filters when m = 0.7. The solid lines denote X;, the dash-dot
lines denote X> and the dash lines denote —4.X,.
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12 Insertion Loss Method
The insertion loss method is based on the attenuation response or insertion loss of a filter. The

insertion loss or power loss ratio of a two-port network is given by:
_ Poweravailablefrom the source P, 1

nc __

Power delivered to load P, - |F(a)]2

PLR -
where I is the reflection coefficient looking into the filter (assume no loss in the filter).

Design of a filter using the insertion-loss approach usually begins by designing a normalized
low-pass prototype (LPP). The LPP is a low-pass filter with source resistance of 1Q and cutoff
frequency of 1 Radian/s. Impedance transformation and frequency scaling are then applied to
denormalize the LPP and synthesize different type of filters with different cutoff frequencies. Fig. 20
summarizes the process of filter design by the insertion loss method.

Low-pass

prototype
design

Filter
specifications

Scaling and
conversion

‘ ' Implementation

J

Fig. 20 Summary of filter design by insertion loss method

Now, consider the reflection coefficient at the input port, which is given by
Z(w)-1

F(a)) = &, where the 1€ source resistance is assumed.
Z(w)+1

Since V(Cf))= J:w v(t)e " dt and w(1) is a real function, V(— a)):V*(a)). Similar result holds for
_V(o) V(o)
I(~0) I (o)

o) Z-o)-1_Z ()-1
Z(-o)+1 Z'(w)+1

IC(w) =M (@I (@) =M@ (-0)=T"(~o) (- ») =T -0 ,

hence IT(w)P? is an even function of @. Therefore, it can be written as a polynomial in @:

I(w) as well. Thus, Z(— a)) = Z*(a)) . Therefore,

=T"(w) . It follows that

M 2

Fo) = it v

M (o )+ N(w”)
where M and N are real polynomials in @’. Thus, the insertion loss can be rewritten as
M (@)
N(@*)’
which is the form of physically realizable power loss ratio. This equation is used to specify desirable
filter responses.
Maximally Flat (Butterworth or binomial filter) This type of filter is optimum in the sense that it

provides the flattest possible passband response for a given filter complexity, or order (i.e., number of
passive elements). For a low-pass filter, it is specified by

P, =1+kw",

where N denotes the order of the filter. The pass band extends from @ = 0 to @ = 1; at the band edge
the power loss ratio is 1 + k*. Typically, k is chosen to be 1 in order to make the band edge the -3 dB
point. Note that the first (2N-1) derivatives of the power loss ratio are zero at @ = 0, resulting in the
maximally flat response.

Equal Ripple (Chebyshev filter) The insertion loss of this low-pass Chebyshev filter is specified by
Chebyshev polynomial as follows

P,p=1+

14



Py =1+KT(w).

This leads to a sharp cutoff with the expense of amplitude ripples in the pass band. The maximum
pass band ripples are given by 1 + k%, thus the pass band ripple level is specified by k°.

Maximally Flat Delay (Bessel-Thomson filter) Flat delay simply implies constant phase velocity,
which in turn implies linear phase, since f = @f/u,. The greatest advantage of this filter is that the
output signal is not distorted, which is desirable in most applications. The insertion loss of this low-
pass filter is specified by

Pr= k2BI%’ (a))’

where k is chosen such that the insertion loss at @ = 0 is unity and B,(x) denotes the Bessel
polynomial of order n. The first 4 Bessel polynomials are

B/(x)=1+x;B,(x) = x? +3x+3;B,(x) = X’ +6x? +15x+15;B,(x) = x*+10x° +45x* +105x +105

Higher-order polynomials can be found using the following recurrence formula:
B (x)=2n-1B,_,(x)+ szH (x).

In fact, the coefficients of B,.(x) can be found directly by formula

2n—k)! z
c, = ry—)and B, (x)= ZCkxk .
2 k! (n - k)! k=0
The above insertion loss specification is obtained by setting x = j@.
Now, consider the transfer function of the third-order low-pass filter given by

H(s)=15/(s’ + 65" +155+15); s5jo.
The phase is given by
150 - o’

p(w)=argH(jw)=- tan™ >-and the group delay becomes

15-6w

B dp(w) 60" +450° +225
do @' +60+450" +225°

which is approximately 1 for small o, i.e., low frequency range. The higher the order, the broader the
frequency range where group delay is flat.
Low-pass filter prototype
Fig. 21 shows the ladder circuit for low-pass filter prototype with the source impedance of 1 3, where
their elements are defined as follows:

generator resistance (Fig.21a)

D(w) =

inductance for series inductors

fo = {generator conductance (Fig.21b)’ k:“](f N - {capacitanoe for shunt capacitors’

{load resistance if g, is a shunt capacitor
gN+1 =

load conductanceif g, is a series inductor

Element values in the figure are different depending on the filter type. They can be determined by
using tables 1, 2, 3, for maximally-flat filter, equal-ripple filter, and maximally-flat time delay,
respectively.

Ry=80=1 L=g Li=g Ly=g;

K/V\/W—c Y R~
(~ =C =g —

S

N\ I

Fig. 21 Ladder circuits for low-pass filter prototype

Also, Fig. 22 shows attenuation versus normalized frequency for maximally flat filter prototypes.
Table 1M
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N 8 8 & g 8s 8 & 8s g9 g0 &
1 2.0000 1.0000

2 14142 14142 1.0000

3 1.0000 2.0000 1.0000 1.0000

4 07654 18478 18478 0.7654 1.0000

5 06180 1.6180 2.0000 1.6180 0.6180 1.0000

6 05176 14142 19318 19318 14142 05176 1.0000

7 04450 1.2470 1.8019 2.0000 1.8019 1.2470 04450 1.0000

8 03902 L1.1111 16629 19615 19615 16629 1.1111 03902 1.0000

9 03473 1.0000 1.5321 1.8794 2.0000 1.8794 1.5321 1.0000 0.3473 1.0000

10 03129 09080 14142 17820 19754 19754 17820 14142 09080 03129 1.0000
Table 2al'l:

0.5 dB Ripple

N 8 & & 8s 8s 86 & &5 8 g0 &n
1 0.6986 1.0000

2 14029 0.7071 1.9841

3 15963 1.0967 1.5963 1.0000

4 16703 1.1926 23661 0.8419 1.9841

5 17058 1.2296 2.5408 1.2296 1.7058 1.0000

6 1.7254 12479 26064 1.3137 24758 0.8696 1.9841

7 17372 1.2583 2.6381 13444 26381 1.2583 1.7372 1.0000

8 1.7451 12647 26564 1.3590 26964 1.3389 25093 0.8796 1.9841

9 17504 12690 2.6678 13673 2.7239 13673 26678 1.2690 1.7504 1.0000

10 17543 1.2721 26754 13725 27392 1.3806 2.7231 1.3485 25239 0.8842 19841
Table 2b:

3.0 dB Ripple

N 4 & 83 8 8s 86 & 8 &9 gi0 &1

1 1.9953  1.0000

2 3.1013 05339 5.8095

3 33487 0.7117 3.3487 1.0000

4 34389 0.7483 43471 05920 5.8095

5 34817 07618 45381 0.7618 34817 1.0000

6 35045 0.7685 4.6061 07929 44641 0.6033 5.8095

7 35182 07723 4638 08039 46386 0.7723 35182 1.0000

8 35277 07745 46575 08089 4.6990 0.8018 44990 0.6073 5.8095

9 35340 07760 4.6692 08118 47272 0.8118 4.6692 0.7760 3.5340 1.0000

10 3.5384 0.7771 4.6768 08136 47425 0.8164 4.7260 0.8051 4.5142 0.6091 5.8095
Table 3

N & & g 84 8s 86 87 8 & 810 g

| 2.0000  1.0000

2 15774 04226 1.0000

3 1.2550 0.5528 0.1922 1.0000

4 1.0598 05116 03181 0.1104 1.0000

5 09303 04577 03312 02090 0.0718 1.0000

6 08377 04116 03158 0.2364 0.1480 0.0505 1.0000

7 07677 03744 02944 0.2378 0.1778 0.1104 0.0375 1.0000

8 07125 03446 0.2735 0.2297 0.1867 0.1387 0.0855 0.0289 1.0000

9 0.6678 03203 0.2547 0.2184 0.1859 0.1506 0.1111 0.0682 0.0230 1.0000

10 06305 03002 02384 02066 0.1808 0.1539 0.1240 0.0911 0.0557 0.0187 1.0000
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Likewise, Fig. 23 (a), 23 (b) show attenuation versus normalized frequency for equal-ripple filter
prototypes with (a) 0.5 dB ripple level and (b) 3.0 dB ripple level. Fig. 24 shows delay versus
normalized frequency for maximally flat group delay filter prototypes.
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13 Filter Transformations

The low-pass filter prototypes are designed assuming that R, = 1 Q and @. = 1 rad/s. For practical
filters, these prototypes have to be scaled in terms of impedance and frequency. Furthermore, they can
also be converted to give high-pass, bandpass or bandstop characteristics.

Impedance and Frequency Scaling for Low-Pass Filters

Assuming the source impedance of Ro, the new filter component values are obtained by

L'=R,L; C'=C/R,; R,=R,; R',=R,R,,

where L, C and R; are the component values for the original prototype.

To change the cutoff frequency of a low-pass filter prototype from unity to ., the following
frequency scaling is required:

w<—olo; P, (=P, ol/lo,),

where @. denotes the new cutoff frequency. This transformation can be viewed as a stretching of the
original passband. The new element values are determined by applying the frequency scaling to the
series reactances and shunt susceptances as follows:

JX,=j—VL, =joL; jB, = j—C, = joC', , which shows that the new element values are
[0 [0

L C
L, =—%,C =-%.
a)C a)C
Combining the results due to both impedance and frequency scaling yields
R,L C
L, =%, C,=—+.
c R()a)c'

Low-pass to high-pass transformation The frequency substitution
w<—-0olwo; P, (0)=P,-0 lo),
can be used to convert a low-pass response to a high-pass response. This substitution maps @= 0 to @

= o0, and vice versa; cutoff occurs when @= .. The negative sign is needed to convert inductors
(and capacitors) to realizable capacitors (and inductors). Applying frequency substitution yields

: . @, 1 : NG 1
JX,=—-j—L =—+; jB,=—j—C, =———, which shows that the new element values
w joC', 0] JjoL',
are
' 1 ' 1
C,= ; L' = .
a)ch a)cck

Combining the results due to both impedance and frequency substitution yields
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B Ro.L,’ . 0.C,

Example (Low-pass filter design) Design a maximally flat low-pass filter with a cutoff frequency of 2
GHz, impedance of 50 Q, and at least 15 dB insertion loss at 3 GHz. Compute and plot the amplitude

response and group delay for f = 0 to 4 GHz, and compare with an equal-ripple (3.0 dB ripple) and
linear phase filter having the same order.

'
k

Linecar ph;{sc

N=§ 1.25
Maximally flat
/ N=5

Equal-ripple

Attenuation (dB)
)
S
Group delay (nsec)
=)
~J
W

- Equal-ripple ,/
. N=$§

Maximally flat
0 /

40 1 ! ! ! ! Il 1 1 1 | |
0 1.0 2.0 3.0 40 1.0 20 3.0 40

Frequency (GHz) Frequency (GHz)
Bandpass filter transformation Let @i, @» denote the edges of the passband, then the low-pass to
bandpass transformation can be accomplished by the following frequency substitution:

, o o 1o o w, — O
we—20 | QG |2 DA BTG
w,-o\0w, o Mo, o ,
where A denotes the fractional bandwidth of the passband and axydenotes the center frequency, which
is chosen to be the geometric mean of @ and @, i.e.,

W) =4/ W0, ,

for simplification purposes. It follows that

2 2
when o= a, %(ﬁ—&jzo;when o= o, i(ﬁ—&j:l[uj:—l;

®, o w, o

1o o 1o -}
when w= @, —| — ——2 |=—| =2—2 | =1.
Mo, o Al oo,
Therefore, the pass band exists in the range where the normalized frequency is between -1 and 1, as in

the case of low-pass filter prototype. Applying the frequency substitution in the expressions for series
reactances and shunt susceptances yields

1o o oL w,L 1 L A
'X - 7 __ ___0 L — '_k_ 'Mz .a)L' —'—’L' = k , C' =
i [a) j ¢ ]Aa)o / Aw O ]a)(I'k " Aw ¢

o @y L,

>

} A o o .aoC . @,C R | , C . A
Bi=j—|———|C=j——j = jeC—j——,Cy=—, L= :
Aw, Aw oL, Aw, o,C,
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Thus, the low-pass filter elements are converted to series resonant circuits (low impedance at
resonance) in the series arms, and to parallel resonant circuits (high impedance at resonance) in the
shunt arms. Notice that both series and parallel resonator elements have a resonant frequency of an.
Bandstop filter transformation The inverse transformation can be used to obtain a bandstop response.
Thus, the frequency substitution is given by

-1

< A(ﬁ - &J , where A and ay have the same definitions as before. Then following the
W, O

procedure used previously for the bandpass filter, the series inductors of the low-pass filter prototype

are converted to parallel LC circuits having element values given by

AL 1
L, =—%, C,= .
W, w,AL,
Likewise, the shunt capacitors are converted to series LC circuits having element values given by
AC 1
C,=—%,L = .
@, w,AC,

Table 4 summarizes the element transformations from a low-pass filter prototype to a high-pass,
bandpass, or bandstop filter. Notice that the impedance scaling is not included.
Table 412!

Low-pass High-pass Bandpass Bandstop
7
1 L LA 1
L Tok wpA = — oA
A

wyl

o
I 1
I A c w,CA

¥ @C  @C oA
cA
1_ wy

Example (Bandpass filter design) Design a bandpass filter having a 0.5 dB equal-ripple response, with
N = 3. The center frequency is 1 GHz, the bandwidth is 10%, and the impedance is 50 Q.1

o—
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