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Filters 

0 Overview 

A filter is a two-port device used to control the frequency response at a certain point in a system by 

providing transmission at frequencies within the passband of the filter and attenuation in its stopband. 

It can be classified by magnitude response as low-pass filter (LPF), high-pass filter (HPF), band-pass 

filter (BPF), and band-stop filter (BSF). It has wide range of applications including: 

 Desired frequency band selection and unwanted band rejection (i.e., SNR improvement and 

Interference reduction) 

 Noise reduction 

 Channel selection in mobile and satellite communications 

1 Image Impedance 

In a two-port network, if two impedances Z1i and Z2i are such that Z1i is the driving point impedance at 

port 1 with impedance Z2i is connected across port 2 and Z2i is the driving point impedance at port 2 

with impedance Z1i is connected across port 1, then the impedances Z1i and Z2i are called the image 

impedances of the network. For symmetrical network, image impedances are equal to each other, i.e., 

Z1i = Z2i, and is called the characteristic or iterative impedance Z0. 

Consider networks shown in Fig. 1, the driving 

point impedance at port 1 is given by 
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Likewise, the driving point impedance at port 2 is 

given by 
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Here, ABCD denote the transmission parameters. 

Solving the two equations above yields 
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Since the open-circuit input impedance Zioc and 

the short–circuit input impedance Zisc are given by 
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Fig. 1: Image impedance 

the image impedance at port 1 can be rewritten as 

iscioci ZZZ 1 . 

Likewise, since the open-circuit output impedance Zooc and the short–circuit input impedance Zosc are 

given by 
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the image impedance at port 2 can be rewritten as 

oscooci ZZZ 2 . 

2 Symmetric T and  networks  

Consider a T network interposed between a generator with internal impedance Z1i and a load 

impedance of Z2i, as shown in Fig. 2. It is desired that the maximum power transfer occurs, i.e., the 

impedance at 1,1’ terminals into which the generator supplies power be equal to Z1i, and the 

impedance at 2,2’ terminals be equal to Z2i. Hence, 
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Solving both equations yields
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Fig. 2: A T-network interposed between load 

and source 

Note also that 

scociscoci ZZZZZZ 222111 ;  , as before. 

When Z1=Z2, i.e., two series arms of a T-network are equal, 

the network is said to be symmetric. For symmetric 

networks,  Z1i = Z2i = Z0 (characteristic impedance).  Filter 

networks are usually set up as symmetrical sections of T or  

types (Fig. 3(a), Fig. 4(a)). T section can be considered as 

built up of unsymmetrical L-half sections (Fig. 3(b)). For the 

T network shown in Fig. 3(a) terminated by its characteristic 

impedance Z0, the input impedance is given by 
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With proper choice of Z0, it is possible to make Z1in=Z0, 
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Hence, for symmetrical T-section, Z0 is given by 
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(a) T-section 

 
(b) two L sections 

Fig. 3: A symmetrical T-section 

Again, from open and short-circuit measurements for the symmetrical T section,
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Thus, scocT ZZZ 0 . 

Likewise,  section can be considered as built up of 

unsymmetrical L-half sections (Fig. 4(b)). For the  

network shown in Fig. 4(a) terminated by its 

characteristic impedance Z0, the input impedance is 

given by 
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Requiring Z1in=Z0 leads to 
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It can also be shown that 

scocZZZ 0 . 

 
(a)  -section 

 
(b) two L sections 

Fig. 4: A symmetrical  -section 
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A series connection of several T or  networks leads to so-called ladder networks, as shown in Fig. 5 

(a)-(d). Terminal half-section matching is obtained by connecting the ends of the T-network with the 

half sections of the -network (Fig. 4 (b)), i.e., connect terminals 2,2’ of Fig. 4(b) with terminals a,a’ 

of Fig. 5(a) and 3,3’ with b,b’. Similarly, for the -network of Fig. 5(c), terminal matching is to be 

done by the half-sections of the T-network (Fig. 3(b)), i.e., connecting terminals 2,2’ to c,c’ and 1,1’ 

to d,d’. 

 

(a) Ladder networks of T 

sections 

 

(b) Equivalent network 

of (a) 

 

(c) Ladder networks of  

sections 

 

 

(d) Equivalent network 

of (c) 

 

 Fig. 5: Ladder networks made of T-sections and -sections. 

3 Propagation Constant 
Under Z0 termination, input and output impedances are equal, i.e., 

)/(/ 22110 IVIVZ  , 

then 


eIIVV  )/(/ 2121 , 

where  is a complex number and is defined as 

 j , 

where  , ,  are propagation constant, attenuation constant, and phase constant, respectively. 

Furthermore, 
 jj eeIIAIIVV  212121 /)/(/ . 

For n number of sections cascaded, with all of them having the same Z0 value, the ratio of currents can 

be written as 
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The overall propagation constant  can be expressed as 

n  L21 . 

4 Properties of Symmetrical Network 

For a symmetrical T-section terminated with a load Z0 and fed with a generator E0, as shown in Fig. 6, 
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Fig. 6 Symmetrical network terminated by Z0 

Applying the previous result
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 
2

1

2

1

4
1

2
1

2

1
)1)cosh(

2

1
)

2
sinh(

Z

Z

Z

Z








 


. 

Again, 
2

1

2

2

1

2

1

2

021

2

1

22
1

2/

Z

Z

Z

Z

Z

Z

Z

ZZZ
e

I

I

















, 

So, 
























2

1

2

2

1

2

1

22
1ln

Z

Z

Z

Z

Z

Z
 . 

5 Filter Fundamentals 

The purpose of a filter network is to pass a desired frequency band without loss and stop or 

completely attenuate all undesired frequency bands. Since  j ,  = 0 means there is no 

attenuation in transmission with only a phase shift, i.e., |I1| = |I2| and the operation is in the pass band. 

If  > 0, then |I1| > |I2|, i.e., the attenuation occurs and the operation is in the stop band. 

Recall that 
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Case I When Z1 and Z2 are of the same type of reactances, then  Z1/4 Z2 > 0 and sinh(/2) is real, i.e., 

(i) 0)2/sin()2/cosh(    or  K,4,2,0,;0)2/sin(  nn  

(ii) .4/)2/cos()2/sinh( 21 ZZ  
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Therefore, cos(/2) = 1 as sin(/2) =0. Hence, 
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  . 

Case II If Z1 and Z2 are of the opposite type of reactances, then Z1/4 Z2 is negative, i.e., Z1/4 Z2 < 0 and 

obviously, 21 4/ ZZ is imaginary. Therefore, the following conditions must be satisfied: 

(i) 21 4/)2/sin()2/cosh( ZZj   

(ii) 0)2/cos()2/sinh(   

Two conditions may arise 

(a) 0 when 0 i.e.,,0)2/sinh(   and 

1)2/cosh(4/)2/sin( 21   QZZj . 

This signifies the region of zero attenuation or pass band which is limited by the upper limit of the 

sine term, i.e., sin(/2) = |1|, or it is required that 

04/1 21  ZZ . 

The phase angle in the pass band is given by 
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(b) cos(/2) = 0; therefore sin(/2) = ±1;  = (2n-1) when  ≠ 0 and 
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Since hyperbolic cosine has no value below 1, the condition for stop band is Z1/4 Z2 < -1. The 

frequencies at which the network changes from pass band to stop band and vice versa are called the 

cut-off frequencies. These frequencies occur when 

2121121 4or  ,14/and0or  ,04/ ZZZZZZZ  , 

where Z1 and Z2 are of the opposite type of reactances. 

For symmetrical T- and -network made up entirely of pure reactances, Z0 is given by 

)4/1( 21210 XXXXZ T  ; TZXXZ 0210 / . 

Table 1 summarizes the two bands, namely the pass band and the stop band with respect to the 

different values of X1/4X2. 

Table 1 

X1/4X2 0 to -1 -1 to - 

Band Pass Stop 

 0 21

1 4/cosh2 XX
  

 21

1 4/sin2 XX
   

Z0T positively real purely reactive 

In a pass band, Z0 is real and positive. If the network is terminated with a resistive Z0 = R0, then the 

input impedance is R0 and the network will accept and transmit power to the resistive load without 

loss. If the network is fed by a generator having an internal impedance R0, then the system will be 

matched and the maximum power transfer occurs. In a stop band, Z0 is reactive. If the network is 

terminated in its reactive Z0, it may transmit voltage or current with 90 phase difference between 

input and output with considerable attenuation. 

 

6 The constant-k Filters 

In constant-k filters, Z1 and Z2 are of opposite reactances. Then 
2

21 kZZ  , 

where k is a constant. 

6.1 Low-Pass Filters 
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For low-pass filters, Z1=jL, Z2=1/jC, then 
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LC

LC
Cj

Lj

Z

Z
c

2
1

444

2

2

1  





. 

Fig. 7 shows the low-pass T-section filter.  
Fig. 7 Low-pass T-section 

The characteristic impedance of the T-section and -section are given by 
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2

0 )/(1/ ck ffRZ  . 

Design Procedure To determine the values of L, C, the value of Rk, i.e., the characteristic impedance 

at zero frequency, and the cut-off frequency are required. Then, from 
2/ kRCL    and  

cfLC /1 , 

L, C can be calculated. 

Low-pass Filter Example Design a low-pass filter with cut-off frequency of 1 MHz, and the 

characteristic impedance of 100 . 

 

 
6.2 High-Pass Filters 

For high-pass filters, Z1=1/jC, Z2=jL, then 
22

21 / kRCLZZ k  . 

The cut-off frequency can be found from 
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Fig. 8 shows the high-pass T-section filter. 

 
Fig. 8 High-pass T-section 

The characteristic impedance of the T-section and -section are given by 
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2

0 )/(1/ ffRZ ck  . 

Design Procedure To determine the values of L, C, the value of Rk, i.e., the characteristic impedance 

at infinite frequency, and the cut-off frequency are required. Then, from 
2/ kRCL    and  

cfLC 4/1 , 

L, C can be calculated. 

High-pass Filter Example Design a high-pass filter with cut-off frequency of 1 MHz, and the 

characteristic impedance of 100 . 

 

 
6.3 Band-Pass Filters 

For band-pass filters, Z1 is a series LC circuit, i.e., Z1= j (L1 - 

1/C1), and Z2 is a parallel LC circuit, i.e., Z2=jL2 // 1/jC2 , 

as shown in Fig. 9. The condition for the band-pass filter is 

that both series and parallel LC circuits have equal resonant 

frequencies, i.e., 
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The cut-off frequency can be found from 

 
Fig. 9 Band-pass T-section 
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Hence, Z1 at lower cut-off frequency fL is equal to –Z1 at upper cut-off frequency fH, i.e., 
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Also, from 
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one can derive the condition 
2

012  CRkLH  . 

Design Procedure To determine the values of L1, C1, L2, and C2, one needs to specify the center 

frequency, the bandwidth and the desired characteristic impedance, then using the following 

procedures: 

1. Determine C1 from 2

012  CRkLH  . 

2. Determine L1 from 
1

2

01 /1 CL  . 

3. Determine L2 from L2 = k2C1, since L2/C1= k2. 

4. Determine C2 from 
2

2

02 /1 LC  . 

Band-pass Filter Example Design a band-pass filter with center frequency of 100 MHz, the bandwidth 

of 20 MHz, and the characteristic impedance of 100 . 

 

 
6.4 Band-Stop Filters (or Band-elimination filters, Band-rejection filters) 

For band-stop filters, Z1 is a parallel LC circuit, i.e., Z1= jL1 // 

1/jC1, and Z2 is a series LC circuit, i.e., Z2= j (L2 - 1/C2), as 

shown in Fig. 10. The condition for the band-stop filter is that 

both series and parallel LC circuits have equal resonant 

frequencies, i.e., 
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The cut-off frequency can be found from 

 
Fig. 10 Band-stop T-section 
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Hence, Z2 at lower  cut-off frequency fL is equal to –Z2 at upper cut-off frequency fH, i.e., 
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one can derive the condition 
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02 CRkLH  . 

Design Procedure To determine the values of L1, C1, L2, and C2, one needs to specify the center 

frequency, the bandwidth and the desired characteristic impedance, then using the following 

procedures: 

1. Determine C2 from 2/2

02 CRkLH  . 

2. Determine L2 from 
2

2

02 /1 CL  . 

3. Determine L1 from L1 = k2C2, since L1/C2= k2. 

4. Determine C1 from 
1

2

01 /1 LC  . 

Band-stop Filter Example Design a band-stop filter with center frequency of 100 MHz, the bandwidth 

of 20 MHz, and the characteristic impedance of 100 . 

 

 
7 The m-derived T-section 

The constant-k prototype filter section, though simple, has two major disadvantages, namely (i) the 

characteristic impedance varies widely over the pass band so that impedance matching is not possible, 

(ii) the cut-off rate is not appreciably high, i.e., the drop-off rate is not sufficiently fast. The cut-off 
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rate may be raised by cascading a number of constant-k sections in series, but this is not economical. 

The m-derived filters are designed to achieve this objective. 

 The approach used here is to introduce a zero frequency into the impedance of the shunt arm. 

At this frequency, denoted by f, the shunt arm becomes a short circuit and the attenuation becomes 

infinity. If f is chosen to be close to the cut-off frequency, then the cut-off rate can be raised. The 

attenuation may be kept at high value throughout the stop band by cascading the constant-k prototype 

section with the m-derived section. Now, consider the m-derived T-section, let us assume 

11' mZZ  , 

where 0 < m < 1. Then, solving for Z2’ that achieves the same value of Z0T yields 

'4/''4/'4/ 21

2

1

2

21

2

121

2

10 ZmZZmZZZZZZZ T  or  1

2

2
2

4

1
' Z

m

m

m

Z
Z


 . 

For a low-pass filter section, Z1=jL, Z2=1/jC, then 

Z1’=jmL, Z2=1/jmC+(1-m2) jmL/4m, as shown in Fig. 11. 

The resonant frequency of the shunt arm becomes 

2

2

2

22
2

1)1(

4
1

4

1

mLCm
LC

m c











 or 

21/ mc   , where c is the cut-off frequency. 

Therefore, the smaller the value of m, the sharper the cut-off. 

Notice that 

L
m

m

4

1 2

 
Fig. 11 m-derived low-pass T-section 

Cj

m

mCj

LCm

m
Lj

m

m

Cjm
Z

m

m

m

Z
Z c










)/)(1(11)1(4

4

1

4

11

4

1
'

222222

1

2

2
2











 , 

the pass and stop bands can be characterized as follows: 

(a) Pass band 04/1 21  ZZ and  0  .
 

)/)(1(1

/
sin2

)/)(1(1
sin2'4/'sin2

222

1

222

22
1

21

1

c

c

c m

m

m

LCm
ZZ













 

.
 

(b) Stop band -<Z1’/4Z2’<-1 and =(2n-1). 

For fc < f < f, 

)/(1

/
cosh2

)/)(1(1

/
cosh24/cosh2

22

1

222

1

21

1


















 c

c

c m

m

m
ZZ . 

For f > f 

1)/(

/
cosh2

1)/)(1(

/
cosh24/cosh2

22

1

222

1

21

1


















 c

c

c m

m

m
ZZ . 

Similar analysis procedure can be applied to the m-derived high-pass T-section, as shown in Fig. 12. 

Here, 
21 mc   . 

Likewise, the m-derived band-pass T-section is shown in Fig. 13. 

Question Find  for the T-section in Fig. 13. 

m-derived Low-pass Filter Example Design a low-pass filter 

with cut-off frequency of 1 MHz, and the characteristic 

impedance of 100 . Here, use m = 0.7. 
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Fig. 12 m-derived high-pass T-section   Fig. 13 m-derived band-pass T-section 

8 Termination with m-derived half sections 

The m-derived T- or -sections can be formed by the splitted m-derived half sections or L-sections, as 

shown in Fig. 14. These m-derived half sections, having m = 0.6, are called terminating half sections. 
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          (a)   (b)    (c) 

Fig. 14 (a) m-derived T-section (b) m-derived -section (c) m-derived half sections 

Zobel discovered that an m-derived half section could be made to change its characteristics with 

frequency in such a way that the filter is approximately matched to its load at all frequencies over 

most of the pass band. 

 Now, the image impedance of the left half section at the 1,1’ terminals is given by 

    021

2

121

2

1

2

21

2

111 4/)1(1
2//22/)1(

)2/(/22/)1(
ZZZm

mZmZmZm

mZmZmZm
ZZZ scoci 




 , 

where )4/1/( 21210 ZZZZZ  . The impedance of the left half section at terminal 2,2’ is 

  Tscoci ZZZZZmZmZmZmmZZZZ 02121121

2

1222 )4/1(2//22/)1(2/  . 

The image impedance at 3,3’ terminals 

is equal to Z0T, and at terminals 4,4’ is 

equal to Z1i. For low-pass filters, using 

2

0 )/(1/ ck ffRZ  yields 

 
2

22

1

)/(1

)/)(1(1

c

ck
i

ff

ffmR
Z




 . 

The variation of image impedance as a 

function of f/fc is plotted in Fig. 15. It is 

seen that m = 0.6 half section has a 

nearly constant value of Z1i can be 

obtained over 85% of the pass band. 

Following the same procedure, the 

image impedance for high-pass filters 

can be given by 

 
2

22

1

)/(1

)/)(1(1

ff

ffmR
Z

c

ck
i




   

Fig. 15: Variation of image impedance of m-derived section 
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Fig. 16 summarizes the T- and -sections used for low-pass and high-pass T-section filter designs. 

8 Composite Filter Design 
By combining in cascade the constant-k, m-derived sharp cut-off, and the m-derived matching 

sections, one can realize a filter with the desired attenuation and matching properties. This type of 

design is called a composite filter. Fig. 17 shows an example of composite filter design. The constant-

k sections, the m-derived section as well as the matching half -sections are shown in Fig. 16. 

 
Fig. 16 Summary of composite filter design 

 

 
Fig. 17: A four-stage composite filter 
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9 Reactance Plot 
Fig. 18 shows a typical plot of reactances as a function of frequency for low-pass, high-pass, band-

pass, and band-stop constant-k filters. Likewise, Fig. 19 shows reactance plot for m-derived filters 

when m = 0.7. 

 
Fig. 18: Reactance plot for constant-k filters. The solid lines denote X1, the dash-dot lines denote X2 

and the dash lines denote –4Z2. 

 
Fig. 19: Reactance plot for m-derived filters when m = 0.7. The solid lines denote X1, the dash-dot 

lines denote X2 and the dash lines denote –4X2. 
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12 Insertion Loss Method 
The insertion loss method is based on the attenuation response or insertion loss of a filter. The 

insertion loss or power loss ratio of a two-port network is given by: 

  2
1

1

load  todeliveredPower 

source  thefrom availablePower 




load

inc
LR

P

P
P   

where  is the reflection coefficient looking into the filter (assume no loss in the filter). 

 Design of a filter using the insertion-loss approach usually begins by designing a normalized 

low-pass prototype (LPP).  The LPP is a low-pass filter with source resistance of 1 and cutoff 

frequency of 1 Radian/s. Impedance transformation and frequency scaling are then applied to 

denormalize the LPP and synthesize different type of filters with different cutoff frequencies. Fig. 20 

summarizes the process of filter design by the insertion loss method. 

 
Fig. 20 Summary of filter design by insertion loss method 

Now, consider the reflection coefficient at the input port, which is given by 

 
1)(

1)(









Z

Z
, where the 1 source resistance is assumed. 

Since   




 dtetvV
tj )(  and v(t) is a real function,   )(*  VV  . Similar result holds for 

I() as well. Thus,   )(
)(

)(

)(

)( *

*

*








 Z
I

V

I

V
Z 




 . Therefore, 

  )(
1)(

1)(

1)(

1)( *

*

*








 








Z

Z

Z

Z
. It follows that 

    2**2
)()()()()()(   , 

hence ||2 is an even function of . Therefore, it can be written as a polynomial in 2: 

 
)()(

)(
22

2
2





NM

M


  

 where M and N are real polynomials in 2. Thus, the insertion loss can be rewritten as 

)(

)(
1

2

2




N

M
PLR  , 

which is the form of physically realizable power loss ratio. This equation is used to specify desirable 

filter responses. 

Maximally Flat (Butterworth or binomial filter) This type of filter is optimum in the sense that it 

provides the flattest possible passband response for a given filter complexity, or order (i.e., number of 

passive elements). For a low-pass filter, it is specified by 
N

LR kP
221  , 

where N denotes the order of the filter. The pass band extends from  = 0 to  =; at the band edge 

the power loss ratio is 1 + k2. Typically, k is chosen to be 1 in order to make the band edge the -3 dB 

point. Note that the first (2N-1) derivatives of the power loss ratio are zero at  = 0, resulting in the 

maximally flat response. 

Equal Ripple (Chebyshev filter) The insertion loss of this low-pass Chebyshev filter is specified by 

Chebyshev polynomial as follows 



15 

 

 221
N

TkPLR  . 

This leads to a sharp cutoff with the expense of amplitude ripples in the pass band. The maximum 

pass band ripples are given by 1 + k2, thus the pass band ripple level is specified by k2.  

Maximally Flat Delay (Bessel-Thomson filter) Flat delay simply implies constant phase velocity, 

which in turn implies linear phase, since  = /up. The greatest advantage of this filter is that the 

output signal is not distorted, which is desirable in most applications.  The insertion loss of this low-

pass filter is specified by 

 22

NLR BkP  , 

where k is chosen such that the insertion loss at  = 0 is unity and Bn(x) denotes the Bessel 

polynomial of order n. The first 4 Bessel polynomials are 

1051054510)(;15156)(;33)(;1)( 234

4

23

3

2

21  xxxxxBxxxxBxxxBxxB

 Higher-order polynomials can be found using the following recurrence formula: 

)()()12()( 2

2

1 xBxxBnxB nnn   . 

In fact, the coefficients of Bn(x) can be found directly by formula 

)!(!2

)!2(

knk

kn
c

knk 


  and 



n

k

k

kn xcxB
0

)( . 

The above insertion loss specification is obtained by setting x = j. 

Now, consider the transfer function of the third-order low-pass filter given by 

)15156/(15)( 23  ssssH ; s=j

The phase is given by 

2

3
1

615

15
tan)(arg)(








 jH and the group delay becomes 

225456

225456)(
)(

246

24












d

d
D , 

which is approximately 1 for small i.e., low frequency range. The higher the order, the broader the 

frequency range where group delay is flat. 

Low-pass filter prototype 

Fig. 21 shows the ladder circuit for low-pass filter prototype with the source impedance of 1 , where 

their elements are defined as follows: 






21b) (Fig. econductancgenerator 

21a) (Fig. resistancegenerator 
0g ; 






 capacitorsshunt for  ecapacitanc

inductors seriesfor  inductance

 to1
k

g

Nk

; 






inductor series a is  if econductanc load

capacitorshunt  a is  if resistance load
1

N

N

N
g

g
g  

Element values in the figure are different depending on the filter type. They can be determined by 

using tables 1, 2, 3, for maximally-flat filter, equal-ripple filter, and maximally-flat time delay, 

respectively. 

  

Fig. 21 Ladder circuits for low-pass filter prototype 

Also, Fig. 22 shows attenuation versus normalized frequency for maximally flat filter prototypes. 

Table 1[1]: 
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Table 2a[1]: 

 
Table 2b: 

 
Table 3[1]: 
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Likewise, Fig. 23 (a), 23 (b) show attenuation versus normalized frequency for equal-ripple filter 

prototypes with (a) 0.5 dB ripple level and (b) 3.0 dB ripple level. Fig. 24 shows delay versus 

normalized frequency for maximally flat group delay filter prototypes. 

Fig. 22[2] 

Fig. 23 (a) [2] 

Fig. 23 (b) [2] 
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 Fig. 24 [3] 

13 Filter Transformations 

The low-pass filter prototypes are designed assuming that Rs = 1  and c = 1 rad/s. For practical 

filters, these prototypes have to be scaled in terms of impedance and frequency. Furthermore, they can 

also be converted to give high-pass, bandpass or bandstop characteristics. 

Impedance and Frequency Scaling for Low-Pass Filters 

Assuming the source impedance of R0, the new filter component values are obtained by 

LRL 0' ; 0/' RCC  ; 0' RR s  ; LL RRR 0'  , 

where L, C and RL are the component values for the original prototype. 

To change the cutoff frequency of a low-pass filter prototype from unity to c, the following 

frequency scaling is required: 

c / ; )/()(' cLRLR PP   , 

where c denotes the new cutoff frequency. This transformation can be viewed as a stretching of the 

original passband. The new element values are determined by applying the frequency scaling to the 

series reactances and shunt susceptances as follows: 

kk

c

k LjLjjX '



 ; kk

c

k CjCjjB '



 , which shows that the new element values are 

c

k
k

L
L


' ; 

c

k
k

C
C


' . 

Combining the results due to both impedance and frequency scaling yields 

c

k
k

LR
L


0'  ; 

c

k
k

R

C
C

0
'  . 

Low-pass to high-pass transformation The frequency substitution 

 /c ; )/()('  cLRLR PP  , 

can be used to convert a low-pass response to a high-pass response. This substitution maps  = 0 to  

= ±∞, and vice versa; cutoff occurs when  = ±c. The negative sign is needed to convert inductors 

(and capacitors) to realizable capacitors (and inductors). Applying frequency substitution yields 

k

k
c

k
Cj

LjjX
'

1




 ; 
k

k
c

k
Lj

CjjB
'

1




 , which shows that the new element values 

are 

kc

k
L

C


1
'  ; 

kc

k
C

L


1
'  . 

Combining the results due to both impedance and frequency substitution yields 
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kc

k
LR

C
0

1
'  ; 

kc

k
C

R
L


0'  . 

Example (Low-pass filter design) Design a maximally flat low-pass filter with a cutoff frequency of 2 

GHz, impedance of 50 , and at least 15 dB insertion loss at 3 GHz. Compute and plot the amplitude 

response and group delay for f = 0 to 4 GHz, and compare with an equal-ripple (3.0 dB ripple) and 

linear phase filter having the same order. [2] 

 

 

 

 

 

 

Bandpass filter transformation Let 1, 2 denote the edges of the passband, then the low-pass  to 

bandpass transformation can be accomplished by the following frequency substitution: 

0

120
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where  denotes the fractional bandwidth of the passband and 0 denotes the center frequency, which 

is chosen to be the geometric mean of 1 and 2, i.e., 

210   , 

for simplification purposes. It follows that 
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1 0
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. 

Therefore, the pass band exists in the range where the normalized frequency is between -1 and 1, as in 

the case of low-pass filter prototype. Applying the frequency substitution in the expressions for series 

reactances and shunt susceptances yields 
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Thus, the low-pass filter elements are converted to series resonant circuits (low impedance at 

resonance) in the series arms, and to parallel resonant circuits (high impedance at resonance) in the 

shunt arms. Notice that both series and parallel resonator elements have a resonant frequency of 0. 

Bandstop filter transformation The inverse transformation can be used to obtain a bandstop response. 

Thus, the frequency substitution is given by 
1

0

0


















 , where  and 0 have the same definitions as before. Then following the 

procedure used previously for the bandpass filter, the series inductors of the low-pass filter prototype 

are converted to parallel LC circuits having element values given by 

0

'


k
k

L
L


 , 

k

k
L

C



0

1
'


. 

Likewise, the shunt capacitors are converted to series LC circuits having element values given by 

0

'


k
k

C
C


 , 

k

k
C

L



0

1
'


. 

Table 4 summarizes the element transformations from a low-pass filter prototype to a high-pass, 

bandpass, or bandstop filter. Notice that the impedance scaling is not included. 

Table 4[2] 

 
Example (Bandpass filter design) Design a bandpass filter having a 0.5 dB equal-ripple response, with 

N = 3. The center frequency is 1 GHz, the bandwidth is 10%, and the impedance is 50 .[2] 
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