LE 333 Assignment #3

1. A load impedance $Z_{\rm L} = 100 + j50 \ \Omega$ is connected to a transmission line of length $\lambda/8$ with characteristic impedance $Z_0 = 50 \ \Omega$.

a) Calculate the input impedance.

b) Use the Smith chart to find the input impedance.

c) Find the length of the line such that the input impedance becomes <u>real</u> from the input impedance formula and by using the Smith chart.

2. Derive Equations (3.5a-d) from equations (3.3) and (3.4).

3. Show that TE and TM modes in rectangular waveguides satisfy the orthogonality condition, namely

$$\int_{S} \mathbf{E}_{i} \times \mathbf{H}_{j} * d\mathbf{s} = A_{ij} \delta_{ij}$$

where i, j denote the mode indices, S denotes the waveguide cross section, A_{ij} denotes the mode power, and δ_{ij} denotes the Kronecker delta, which equals 1 if i = j, and equals 0 otherwise.

This orthogonality indicates that there are no power couplings among different modes.

4. Plot the frequency response of the TE₁₀ mode attenuation (α_c , α_d), in dB/m, for K-band waveguide made from brass, and is filled with a dielectric material having $\varepsilon_r = 2.2$ and tan $\delta = 0.002$. 5. Find the cutoff frequencies of the TE_{1n} and TM_{1n} (n = 1,2,3) modes of a rectangular waveguide with a = 2.286 cm, b = 1.016 cm and is filled with

(a) air

(b) dielectric with $\varepsilon_r = 2.56$.