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Operational Principles of WDM

• Figure 10-1 depicts the attenuation of light in silica SMF. 
Two low-loss regions are extended over the wavelengths 
ranging from 1270 to 1350 nm (the 1310-nm window) 
and from 1480 to 1600 nm (the 1550-nm window). 

• Differentiating the relationship c = νλ, we have, 
for ∆λ << λ2

cfor ∆λ << λ2

(10-1)
where the deviation in frequency ∆ν corresponds to the 

wavelength deviation ∆λ around λ.

• From Eq. (10-1), the optical bandwidth is ∆ν = 14-THz 
for a usable spectral band ∆λ = 80-nm in the 1310-nm 
window. Similarly, ∆ν = 15-THz for a usable spectral 
band ∆λ = 120-nm in the 1550-nm window.
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Operational Principles of WDM (2)

Figure 10-1. The transmission bandwidths in the 
1310-nm and 1550-nm windows. The ITU-T 
standard for WDM specifies channels with 100-
GHz spacings. 



Example 10-2 If one takes a spectral band of 0.8 nm (or 

equivalently, a mean frequency spacing of 100 GHz) within 

which narrow-linewidth lasers are transmitting, then one can 

send 50 independent signals in the 1525-to-1565-nm band on a 

single fiber.

Operational Principles of WDM (3)

• The ITU-T Recommendation G.692 specifies selecting the 
channels from a grid of frequencies referenced to 193.100-
THz (1552.524-nm) and spacing them 100-GHz (0.8-nm at 
1552-nm) apart. Alternative spacings include 50-GHz (0.4-
nm) and 200-GHz (1.6-nm). 



Operational Principles of WDM (4)

• At the transmitting end, a multiplexer is needed to combine several 
optical outputs into a serial spectrum of closely spaced wavelength 
signals and couple them onto a single fiber. 
• At the receiving end, a demultiplexer is required to separate the optical 
signals into appropriate detection channels for signal processing. 

Figure 10-2. A typical WDM network containing various types of 
optical amplifier. 



• At the transmitting end, the basic design challenge is to have the 

multiplexer provide a low-loss path from each optical source to 

the multiplexer output.

• The optical signals that are combined generally do not emit 

significant amount of optical power outside the designated 

channel spectral width, interchannel crosstalk factors therefore 

Operational Principles of WDM (5)

channel spectral width, interchannel crosstalk factors therefore 

are relatively unimportant at the transmitting end.

• To prevent spurious signals from entering a receiving channel 

(i.e., to give good channel isolation of the different wavelengths 

being used), the demultiplexer must exhibit narrow spectral 

operation, or very stable optical filters with sharp wavelength 

cutoffs must be used. In general, a -10 dB level is not 

satisfactory, whereas a level of -30 dB is acceptable. 



• Figure 10-3 shows a generic star coupler. 

A common fabrication method for an N x N splitter  

is to fuse together the cores of N single-mode fibers 

over a length of a few millimeters. 

• The optical power inserted through one of the N fiber 

entrance ports gets divided uniformly into  the cores 

Passive Coupler Components

entrance ports gets divided uniformly into  the cores 

of the N output fibers through evanescent power 

coupling in the fused region. 

Figure 10-3. Basic star 
coupler concept for 
combining or splitting optical 
powers. 



• The 2 × 2 coupler is fabricated by fusing together two SMFs 
over a uniform section of length W, as shown in Fig. 10-5. 

• Each input and output fiber has a long tapered section of length 
L. The total draw length is L = 2L + W. This device is known as 
a fused biconical tapered coupler. 

The 2 ×××× 2 Fiber Coupler 

• As the input light Po propagates into the coupling region W, 
there is a significant decrease in the V number owing to the 
reduction in the ratio r/λ [see Eq. (2-58)], where r is the reduced 
fiber radius. 

• By making the tapers very gradual, only a negligible fraction of 
the incoming optical power is reflected back into either of the 
input ports. Thus, these devices are also known as directional 
couplers. 



The 2 ×××× 2 Fiber Coupler 

Figure 10-5. Cross-sectional view of a fused-fiber 
coupler having a coupling region W and two 
tapered regions of length L. The total span L L L L = 
2L+W is the coupler draw length. 



• Coupled optical power varied through three 

parameters: 

a). the axial length of the coupling region; 

b). the size of the reduced radius r in the 

coupling region; and 

The 2 ×××× 2 Fiber Coupler (2)

coupling region; and 

c). the difference ∆r in the radii of the two 

fibers in the coupling region. 

• In making a fused fiber coupler, only L and r

change as the coupler is elongated.



• The power P2 coupled from one fiber to another 

over an axial distance z is

P2 = P0sin2(κz)                               

where κ is the coupling coefficient.

The 2 ×××× 2 Fiber Coupler (3)

where κ is the coupling coefficient.

• By conservation of power, for identical-core 

fibers we have

P1 = P0 – P2

= P0[1-sin2(κz)]

= P0cos2(κz)                                 



• The phase of the driven fiber always lags 90° behind 
the phase of the driving fiber, as Fig. 10-6a illustrates. 

• The lagging phase relationship continues until at a 
distance that satisfies κz = π/2, all of the power has 
been transferred from fiber 1 to fiber 2. 

• Now fiber 2 becomes the driving fiber, so that for π/2  

The 2 ×××× 2 Fiber Coupler (4)

• Now fiber 2 becomes the driving fiber, so that for π/2  
< κz < π the phase in fiber 1 lags behind that in fiber 2, 
and so on. 

• Figure 10-6b shows how κ varies with wavelength for 
the final 15mm-long coupler. 

• Different-performance couplers can be made by 
varying the parameters W, L, r, and ∆r for a specific 
wavelength λ. 



Figure 10-6(a). 
Normalized coupled 
powers P2/P0 and P1/P0 as 
a function of the coupler 
draw length for a 1300-nm 
power level P0 launched 
into fiber 1. 

The 2 ×××× 2 Fiber Coupler (5)

into fiber 1. 

Figure 10-6(b). 
Dependence on 
wavelength of the coupled 
powers in the completed 
15mm-long coupler.



• Referring to Fig. 10-5, with P0 being the input 

power and P1 and P2 the output powers, then

• By adjusting the parameters so that power is 

The 2 ×××× 2 Fiber Coupler (6)
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• By adjusting the parameters so that power is 

divided evenly, with half of the input power 

going to each output, one creates a 3-dB coupler. 

• A coupler could also be made in which almost 

all the optical power at 1500-nm goes to one 

port and almost all the energy around 1300-nm 

goes to the other port. 



• The excess loss is defined as the ratio of the input power to  the total 
output power. In decibels, the excess loss  for a 2x2 coupler is

• The insertion loss refers to the loss for a particular port-to-port path. 
For the path from input port i to output port j, we have 

The 2 ×××× 2 Fiber Coupler (7)
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For the path from input port i to output port j, we have 

• Crosstalk or return loss measures the degree of isolation between the 
input at one port and the optical power scattered back into the other 
input port. It is a measure of the optical power level P3 shown in Fig. 
10-4: 
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Example 10-3 A 2 x 2 biconical tapered coupler has an 

input optical power of Po = 200 µW. The output power at 

the other three ports are     P1= 90 µW, P2 = 85 µW, and 

P3 = 6.3 nW.

The 2 ×××× 2 Fiber Coupler (8)



• As shown in Fig. 10-6, all-fiber or integrated-optics devices 

can be analyzed in terms of the scattering matrix S, which 

defines the relationship between 

input field a = [a1 a2]
T and output field b = [b1 b2]

T : b = Sa,  

where  S =               .             (10-8) 

Scattering Matrix

• Here, sij = |sij|exp(jφij) represents the coupling coefficient of 

optical power transfer from input port j to output port i, with 

|sij| being the magnitude of sij and φij being its phase at port i

relative to port j. 

• It follows that         s12 = s21. (10-9)



Scattering Matrix (2)

Figure 10-6. Generic 2x2 guided-wave coupler. 
Here, ai and bj represent the field strengths of 
input port i and output port j, respectively, and 
the sij are the scattering matrix parameters.



• Also, the sum of the output intensities Io must equal the 
sum of the input intensities Ii : 

Io = b1*b1 + b2*b2 = Ii = a1*a1 + a2*a2 

or      
b+b = a+a (10-10)  

• where the superscript ‘*’ means the complex conjugate 

Scattering Matrix (3)

• where the superscript ‘*’ means the complex conjugate 
and the superscript ‘+’ indicates the transpose conjugate.

• Substituting Eqs. (10-8) and (10-9) into (10-10) yields 

s11*s11 + s12*s12 = 1                         (10-11)
s11*s12 + s12*s22 = 0                         (10-12)
s22*s22 + s12*s12 = 1                         (10-13) 



• Assume that the fraction (1-ε) of the optical power from input 

port 1 appears at output port 1, with the remainder ε going to 

output port 2, then we have 

s11 = (1-ε)1/2 with φ11 = 0 
s22 = (1-ε)1/2 with φ22 = 0. 

• Inserting s11 and s22 into Eq. (10-12) and

Scattering Matrix (4)

• Inserting s11 and s22 into Eq. (10-12) and

letting s12 = |s12|exp(jφ12), 

we have       exp(j2φ12) = -1                                      (10-14) 

which holds when 

φ12 = (2n+1)π/2,   where  n = 0, 1, 2, …     (10-15) 

• so that the scattering matrix from Eq. (10-8) becomes 
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Example 10-5 : For a 3-dB coupler, we have ε = 0.5 and 
the output field intensities Eout,1 and Eout,2 can be found 
from the input intensities Ein,1 and Ein,2 and the 
scattering matrix in Eq. (10-16):

Scattering Matrix (5)
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Letting Ein,2 = 0, we have Eout,1 = (1/21/2)Ein,1, and Eout,2

= (j/21/2)Ein,1. The output powers are given by

Pout,1 = Eout,1
.E*out,1 = E2

in,1/2 = Po/2 
Pout,2 = Eout,2

.E*out,2 = E2
in,2/2 = Po/2 

so that half the input power appears at each output of 
the coupler. 
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Figure 10-9(a). 

Cross-sectional top views  

of a uniformly symmetric 

directional waveguide 

coupler with both guides     

having a width A = 8µm, 

The 2 ×××× 2 Waveguide Coupler

having a width A = 8µm, 

Figure 10-9(b).

A uniformly asymmetric 

directional coupler in which 

one guide has a

narrower width B in the 

coupling region. 



The 2 ×××× 2 Waveguide Coupler (2)

• Figure 10-9 shows two types of 2 × 2 waveguide couplers. 
Waveguide devices have intrinsic wavelength dependence in 
the coupling region. 

• The degree of interaction between the guides can be varied 
through the guide width w, the gap s between the guides, and 
the refractive index n1 between the guides.

• Due to the scattering and absorption losses, the propagation 
constant βz of real waveguides is given by βr +jα/2. The 
power in both guides decreases by the factor exp(-αz).

• Losses in semiconductor waveguide devices fall in the range 
0.2 < α < 1 dB/cm, which substantially is higher than the 

nominal 0.1-dB/km losses in fused-fiber couplers.



• The transmission characteristics of a symmetric coupler can be 

expressed through the coupled-mode theory approach to yield 

P2 = Po sin2(κz) exp(-αz)                    (10-18)

• where the coupling coefficient is 

The 2 ×××× 2 Waveguide Coupler (3)

• where the coupling coefficient is 

(10-19)

• This is a function of the waveguide propagation constants βy

and βz, the gap width w and separation s, 

and the extinction coefficient q in the y direction outside the 

waveguide. 

(10-20)
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The 2 ×××× 2 Waveguide Coupler (4)

Figure 10-10. Through-path and coupled power 
distributions as a function of the guide length in a 
symmetric 2x2 guided-wave coupler with κκκκ = 0.6 mm-1

and αααα = 0.02 mm-1. 



• The theoretical power distribution as a function of the 

guide length is as shown in Fig. 10-10, where κ = 0.6 

mm-1 and α = 0.02 mm-1.  

• Analogous to the fused-fiber coupler, complete power 

transfer to the second guide occurs when the guide 

The 2 ×××× 2 Waveguide Coupler (5)

transfer to the second guide occurs when the guide 

length L is

L = [(m+1)/κ](π/2),  with m = 0, 1, 2, …  (10-21) 

• Since κ is almost monotonically proportional to 

wavelength, the coupling ratio P2/P0 rises and falls 

sinusoidally from 0 to 100% as a function of 

wavelength, as Fig. 10-11 illustrates generically. 



• When the two guides do not have the same widths, as 

shown in Fig. 10-7b, the amplitude of the coupled power 

is dependent on wavelength, and  the coupling ratio 

becomes 

P2/Po = (κ2/g2)sin2(gz)exp(-αz)               (10-22) 

The 2 ×××× 2 Waveguide Coupler (6)

P2/Po = (κ /g )sin (gz)exp(-αz)               (10-22) 

• where              

g2 = κ2 + (∆β/2)2 (10-23)

with ∆β being the phase difference between the two 

guides in the z direction. 



The 2 ×××× 2 Waveguide Coupler (7)

Wavelength response of the coupled power P2/P0 in the symmetric and 
asymmetric 2x2 guided-wave coupler

Figure 10-11 Figure 10-12

Example 10-6: A symmetric waveguide coupler has a 

coupling coefficient κ = 0.6 mm-1.  Using Eq. (10-

21), we find the coupling length for  m = 1 to be L = 

5.24 mm. 



• One can fabricate devices that have a flattened 

response in which the coupling ratio is < 100%      

in a specific desired wavelength range, as 

shown   in Fig. 10-12. 

The 2 ×××× 2 Waveguide Coupler (8)

• The wave-flattened response at the lower 

wavelength results from suppression by the 

amplitude term κ2/g2. 

• Note that when ∆β = 0, Eq. (10-22) reduces to 

the symmetric case given by Eq. (10-18). 



The N ×××× N Star Couplers 

• The principal role of star couplers is to combine the powers 
from N inputs and divide them equally among M output ports. 

• The fiber-fusion technique has been a popular construction 
method for N × N star couplers.  

• Figure 10-13 shows a generic 4×4 fused-fiber star coupler. 

• In a star coupler, the splitting loss is given by• In a star coupler, the splitting loss is given by

Splitting Loss = -10log(1/N) = 10logN (10-24)

• For a single input power Pin and N output powers, the excess 
loss is given by

(10-25) 
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• The insertion loss and crosstalk can be found from Eqs. (10-6) 

and (10-7), respectively. 

• Figure 10-14 shows an 8 × 8 device formed by twelve    3-dB 

couplers. N has to be the form of N = 2n with n > 1. 

The N × N Star Couplers (2)

• If an extra node needs to be added to a fully connected N × N

network, the N × N star needs to be replaced by a 2N × 2N star, 

thereby leaving 2(N-1) new ports being unused. 

• Alternatively, one extra 2 × 2 coupler can be used at one port to 

get N + 1 outputs. However, these two new ports have an 

additional 3-dB loss. 



Figure 10-13. Generic 4 × 4 
fused-fiber star coupler 
fabricated by twisting, 
heating, and pulling on 
four fibers to fuse them 
together. 

The N × N Star Couplers (3)

Figure 10-14. 
Example of an 8x8 
star coupler formed 
by interconnecting 
twelve 2x2 couplers. 



• As can be deduced from Fig. 10-14, the number of 3-dB 
couplers needed to construct an N×N star is

Nc = (N/2)log2N

= (N/2)(logN/log2)                          (10-26) 

The N × N Star Couplers (4)

since there are N/2 elements in the vertical
direction and log2N elements horizontally.

• If the fraction of power traversing each 3-dB coupler 
element is FT, with 0 < FT < 1, then the excess loss in 
decibels is 

Excess Loss = -10log[FT
log2N]            (10-27) 



• The splitting loss for this star is given by Eq. 
(10-24). 

• The total loss a signal passes through the log2N
stages of the N×N star and gets divided into N
outputs is

The N × N Star Couplers (5)

outputs is

total loss = splitting loss + excess loss 

= -10log [FT
log2N / N] 

= -10[log N(log FT/log 2) - log N] 

=  10log (1 - 3.322 log FT)log N      (10-28)

• This shows that the loss increases 
logarithmically with N.



Example 10-5 Consider a commercially available 32 x 32 
single-mode coupler made from a cascade of 3-dB 
fused-fiber 2 x 2 couplers, where 5 % of the power is 
lost in each element. 

• From Eq. (10-27), the excess loss is

The N × N Star Couplers (6)

Excess Loss = -10 log(0.95log32/log2) = 1.1 dB 

• From Eq. (10-24), the splitting loss is

Splitting Loss = 10 log32 = 15 dB. 

• Hence, the total loss is 16.1 dB. 



Mach-Zehnder Interferometer 
(MZI) Multiplexers 

• In Figure 10-15, the 2 x 2 Mach-Zehnder

interferometer (MZI) consists of three stages: 

• a 3-dB directional coupler which splits the input 

signals, 

• a central section where one of the waveguides is 

longer by ∆L to give a wavelength-dependent 

phase shift between the two arms, 

• and another 3-dB coupler which recombines the 

signals at the output. 



Figure 10-15. Layout of a 
basic 2 x 2 Mach-
Zehnder Interferometer. 

Mach-Zehnder Interferometer 
(MZI) Multiplexers (2)

• The function of this arrangement is that, by splitting the 

input beam and introducing a phase shift in one of the paths, 

the recombined signals will interfere constructively at one 

output and destructively at the other. The signals then finally 

emerge from only one output port. 



• The propagation matrix Mcoupler for a coupler of length 
d is 

(10-29)

where κ is the coupling coefficient. 

Mach-Zehnder Interferometer 
(MZI) Multiplexers (3)
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• Since we are considering 3-dB couplers which divide 
the power equally, then 2κd = π/2, so that

(10-30)

Note that this matrix is a scattering matrix.
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• In the central region, the outputs from the two 

guides have a phase difference ∆φ given by

∆φ = k1L – k2(L +∆L)

=2πn1L/λ - 2πn2(L+∆L)/λ (10-31)

Mach-Zehnder Interferometer 
(MZI) Multiplexers (4)

=2πn1L/λ - 2πn2(L+∆L)/λ (10-31)

• This phase difference can arise either from a 

different path length or through a refractive index 

difference. 



• Take both arms to have the same index n1 = n2

= neff, we can rewrite Eq. (10-31) as 

∆φ = k∆L,        (10-32)

where k = 2πneff / λ.

Mach-Zehnder Interferometer 
(MZI) Multiplexers (5)

where k = 2πneff / λ.

• For a given phase difference ∆φ, the 

propagation matrix M∆φ for the phase shifter is 
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• The optical output fields Eout,1 and Eout,2 from 

the two central arms can be related to the input 

fields Ein,1 and Ein,2 by 

(10-34)

Mach-Zehnder Interferometer 
(MZI) Multiplexers (6)
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• The inputs to the MZI are at different wavelengths: Ein,1

at λ1 and Ein,2 at λ2. 

• From Eq. (10-34), the output fields Eout,1 and Eout,2 are 

each the sum of the contributions from the two input 

fields: 

Mach-Zehnder Interferometer 
(MZI) Multiplexers (7)

fields: 

Eout,1 =  j[Ein,1(λ1)sin(k1∆L/2) + Ein,2(λ2)cos(k2∆L/2)]

(10-36)

Eout,2 =  j[Ein,1(λ1)cos(k1∆L/2) - Ein,2(λ2)sin(k2∆L/2)]

(10-37) 

where kj = 2πneff/λj. 



• The output powers are found from the light intensity, which is 

the square of the field strengths. Thus,

Pout,1 = Eout,1
.E*out,1

= sin2(k1∆L/2)Pin,1 + cos2(k2∆L/2)Pin,2 (10-38)

Mach-Zehnder Interferometer 
(MZI) Multiplexers (8)

Pout,2 = Eout,2
.E*out,2

= cos2(k1∆L/2)Pin,1 + sin2(k2∆L/2)Pin,2 (10-39)

where Pin,i = |Ein,i|
2. 

• In deriving Eqs. (10-38) and (10-39), the cross terms are 

dropped because the twice optical carrier frequency is beyond 

the response capability of the photo-detector. 



• From Eqs. (10-38) and (10-39), we see that if we want 

all the power from both inputs to leave the same 

output port (port 2), we need to have 

k1∆L/2 = π and  k2∆L/2 = π/2, or 

(k1−k2)∆L = 2πneff[(1/λ1)-(1/λ2)]∆L = π (10-40)

Mach-Zehnder Interferometer 
(MZI) Multiplexers (9)

(k1−k2)∆L = 2πneff[(1/λ1)-(1/λ2)]∆L = π (10-40)

• Hence, the length difference in the interferometer 

arms should be                     

∆L = {2neff[(1/λ1) - (1/λ2)]}
-1

= c/(2neff∆ν)                                   (10-41) 

where ∆ν is the frequency separation of the two 

wavelengths. 



Example 10-8: 

• (a) Assume that the input wavelengths of a 2 x 2 

silicon MZI are separated by 10-GHz (i.e., ∆λ= 

0.08nm at 1550nm).

Mach-Zehnder Interferometer 
(MZI) Multiplexers (10)

• With neff = 1.5 in a silicon waveguide, we have that 

(Eq. 10-41) the waveguide length difference must be 

∆L = (3x108 m/s)/[2(1.5)1010/s] = 10 mm.

• (b) If the frequency separation is 130-GHz (i.e., ∆λ= 

1nm), then ∆L = 0.77 mm. 



• Figure 10-15 gives an example for a 4 x 4 multiplexer.

• The inputs to MZI1 are ν and ν+2∆ν (which we will 

call λ1 and λ3, respectively), and the inputs to MZI2 are 

ν+∆ν and ν+3∆ν (which are called λ2 and λ4, 

respectively). 

Mach-Zehnder Interferometer 
(MZI) Multiplexers (11)

2 4

respectively). 

• Since the signals in both interferometers of the 1st stage 

are separated by 2∆ν, the path differences satisfy the 

condition 

∆L1 = ∆L2 = c/2neff(2∆ν)                    (10-42) 



Mach-Zehnder Interferometer 
(MZI) Multiplexers (12)

Figure 10-15. Example of a four-channel 
wavelength multiplexer using three 2 x 2 MZI 
elements.



• In the next stage, the inputs are separated by ∆ν. 

Consequently, we need to have 

∆L3 = c/2neff ∆ν = 2∆L1 (10-43) 

• When these conditions are satisfied, all four input 

Mach-Zehnder Interferometer 
(MZI) Multiplexers (13) 

• When these conditions are satisfied, all four input 

powers will emerge from port C. 



• For an N-to-1 MZI multiplexer, where N = 2n with n

> 1, the number of multiplexer stages is n and the 

number of MZIs in stage j is 2n-j. 

• The path difference in an interferometer element  of 

Mach-Zehnder Interferometer 
(MZI) Multiplexers (14)

• The path difference in an interferometer element  of 

stage j is 

∆Lstage-j = c/(2n-j neff ∆ν)                 (10-44)

• The N-to-1 MZI multiplexer can be used as a 1-to-N

demultiplexer by reversing the light-propagation 

direction. 



• Isolators are devices that allow light to pass through 

them in only one direction. Note that the Faraday rotator 

is not reciprocal, resulting in light diverges coming from

Isolators

the other direction.

Product of Leysop



• Circulators are devices that direct light sequentially from 

port to port in only one direction.

Circulators



Fiber Grating Filters
• Figure below defines various parameters for a reflection grating. 

• Here, θi is the incident angle of the light, θd is the diffracted angle, and 

Λ is the period of the grating. 

• The spacing between two adjacent slits is called the pitch of the 

grating.

• Constructive interference at a wavelength λ occurs in the imaging 

plane when the rays diffracted at the angle θd satisfy the grating plane when the rays diffracted at the angle θd satisfy the grating 

equation given by Λ(sinθi – sinθd) = mλ [10-45]

Here, m is called the order of 

the grating. 

A grating can separate 

individual wavelengths since 

the grating equation is 

satisfied at different points in 

the imaging plane for 

different wavelengths.



Fiber Bragg Grating (FBGs)

λ =244 nm

• The imprinted grating can be represented as a uniform sinusoidal 

modulation of the refractive index along the core:

n(z) = ncore + δn.[1 + cos(2πz/Λ)]         (10-46)

where ncore is the unexposed core refractive index and δn is the photo-

induced change in the index 

The maximum reflectivity 

Figure 10-20. 
Formation of a 
Bragg grating in a 
fiber core by 
means of two 
intersecting 
ultraviolet light 
beams. 

λuv=244 nm occurs when the Bragg 

condition holds: 

λBragg = 2Λneff,    (10-47)

where neff is the mode 

effective index of the core. 



Fiber Bragg Grating (FBGs) (2)
At this Bragg wavelength, the peak reflectivity Rmax, for the grating of 

length L and coupling coefficient κ, is given by 

Rmax = tanh2(κL). (10-48)

The full bandwidth ∆λ over which Rmax holds is

∆λ = (λ2
Bragg/πneffL)[(κL)2+π2]1/2 (10-49)

An approximation for the FWHM bandwidth is 

∆λFWHM = λBragg s[(δn/2ncore)
2 + (Λ/L)2]1/2 (10-50)

where s = 1 for strong gratings with near 100% reflectivity, and s = 0.5 
for weak gratings. 

For a uniform sinusoidal modulation of the core index, the coupling 
coefficient is given by

κ = πδn.η/λBragg, (10-51)

with η being the fraction of optical power contained in the fiber core. 



Under the assumption that the grating is uniform in the core, η can be 
approximated by

η = 1 - V-2,  (10-52)

where V is the V-number of the fiber. 

Fiber Bragg Grating (FBGs) (3)

Example 10-9: (a) The table below shows the values of Rmax as given 
by Eq. (10-48) for different values of κL:

κL Rmax (%)κL Rmax (%)
1            58
2            93

__ 3_____  98__

• (b). Consider a fiber grating with the following parameters:
L = 0.5 cm, λBragg = 1530 nm, neff = 1.48, 
δn = 2.5 x 10-4, and η = 82 %.

• From Eq. (10-51) we have κ = 4.2 cm-1. 
Substituting this into Eq. (10-49) then yields ∆λ = 0.38 nm. 



Development of Fiber Bragg Gratings

�On filtering the input light source with 

FBG, the wavelength satisfying the 

Bragg condition will be reflected, and 

the other will pass uninfluenced.



FBG Application

Demultiplexing

Multiplexing



Thin-Film Filters (TFF)
The transmission T of an ideal etalon in 

which there is no light absorption by 

the mirrors is an Airy function:

where R is the reflectivity of the 

mirrors. Ignoring any phase change at 
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Fabry-Perot Cavity (Etalon)

mirrors. Ignoring any phase change at 

the mirrors, the phase change becomes:

where n is the refractive index, D is the 

distance between mirrors, and θ is the 

angle to the normal of the incoming 

light beam.

θ
λ
π

φ cos2
2

nD=



Thin-Film Filters (TFF) (2)
The peaks of the spacings, called the passbands, occur at those 

wavelengths that satisfy condition Nλ = 2nDcos θ, where N is an integer.

The distance between adjacent peaks is called the free spectral range or 

FSR, is given by

θ
λ
cos2

FSR
2

nD
=

The ratio FSR/FWHM  (full-width 

Typical TFF

Multiplexing

The ratio FSR/FWHM  (full-width 

half-maximum) gives an 

approximation of the number of 

wavelengths that a filter can 

accommodate. This is known as 

the finesse F of the filter.
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