Chapter 8

Digital Links

Content

- Point-to-point Links
 - Link Power Budget
 - Rise-time Budget
- Power Penalties
 - Dispersions
 - Noise

Photonic Digital Link Analysis & Design

- Point-to-Point Link Requirement:
- Data Rate
- BER
- Distance
- Cost & Complexity
- Analysis Methods:
- Link loss & S/N analysis (link power budget analysis and loss allocation) for a prescribed BER
- Dispersion (rise-time) analysis (rise-time budget allocation)

Selecting the Fiber

Bit rate and distance are the major factors

Other factors to consider: attenuation (depends on?) and distance-bandwidth product (depends on?) cost of the connectors, splicing etc.

Then decide

- Multimode or single mode
- Step or graded index fiber

Selecting the Optical Source

- Emission wavelength
- Spectral line width (FWHM) and number Optical source
 of modes
- Output power
- Stability
- Emission pattern
- Effective radiating area

Selecting the detector

- Type of detector
 - APD: High sensitivity but complex, high bias voltage (40V or more) and expensive
 - PIN: Simpler, thermally stable, low bias voltage (5V or less) and less expensive
- Responsivity (that depends on the avalanche gain & quantum efficiency)
- Operating wavelength and spectral selectivity
- Speed (capacitance) and photosensitive area
- Sensitivity (depends on noise and gain)

Typical bit rates at different wavelengths

Wavelength	LED Systems	LASER Systems.
800-900 nm (Typically Multimode Fiber)	150 Mb/s.km	2500 Mb/s.km
1300 nm (Lowest dispersion)	1500 Mb/s.km	25 Gb/s.km (InGaAsP Laser)
1550 nm (Lowest Attenuation)	1200 Mb/s.km	Up to 500 Gb/s.km (Best demo)

System Design Choices: Photodetector, Optical Source, Fiber

- <u>Photodetectors</u>: Compared to APD, PINs are less expensive and more stable with temperature. However PINs have lower sensitivity.
- Optical Sources:
- 1- LEDs: 150 (Mb/s).km @ 800-900 nm and larger than 1.5 (Gb/s).km @ 1330 nm
- 2- InGaAsP lasers: 25 (Gb/s).km @ 1330 nm and ideally around 500 (Gb/s).km @ 1550 nm. 10-15 dB more power. However more costly and more complex circuitry.
- <u>Fiber</u>:
- 1- Single-mode fibers are often used with lasers or edge-emitting LEDs.
- 2- Multi-mode fibers are normally used with LEDs. NA and Δ should be optimized for any particular application.

Design Considerations

- Link Power Budget
 - There is enough power margin in the system to meet the given BER
- Rise Time Budget
 - Each element of the link is fast enough to meet the given bit rate

These two budgets give necessary conditions for satisfactory operation

Optical power-loss model

$$P_T = P_S - P_R = ml_c + nl_{sp} + \alpha L + \text{system margin}$$

 P_T : Total optical power loss [dB], P_S : Output power of the transmitter [dBm], P_R : Receiver sensitivity [dBm], l_c : connector loss [dB], l_{sp} : splice loss [dB], α : Cable loss [dB/km], L: Cable length [km], m, n: # of connectors, splices

If splice loss is included in cable loss, and no connector in between,

$$P_T = 2l_c + \alpha L + \text{system margin}$$

Example 8.1

Specifications: Data Rate 20 Mb/s, BER 10⁻⁹,

Receiver : *pin* photodiode @ 850 nm -> Required input signal = -42 dBm

Optical source : GaAlAs LED with average optical power $50 \,\mu\text{W} = -13 \,\text{dBm}$

Connector loss : 1 dB at both transmitter and receiver System margin : 6 dB

Thus,

 $P_T = P_S - P_R = 29 \text{ dB} = 2(1 \text{ dB}) + \alpha L + 6 \text{ dB} \rightarrow \alpha L = 21 \text{ dB}$ If $\alpha = 3.5 \text{ dB/km}$, then a 6-km transmission path is possible.

Receiver Sensitivities vs. Bit Rate

The Si PIN & APD and InGaAsP PIN plots for BER= 10^{-9} . The InGaAs APD plot is for BER= 10^{-11} .

Link Loss Budget [Example 8.1]

Link Power Budget Table [Example 8.2]

• Example: [SONET OC-48 (2.5 Gb/s) link]

> <u>Transmitter</u>: 3dBm @ 1550 nm; <u>Receiver</u>: InGaAs APD with -32 dBm sensitivity @ 2.5 Gb/s;

<u>Fiber</u>: 60 km long with 0.3 dB/km attenuation; jumper cable loss 3 dB each, connector loss of 1 dB each.

Component/loss parameter	Output/sensitivity /loss	Power margin (dB)
Laser output	3 dBm	
APD Sensitivity @ 2.5 Gb/s	-32 dBm	
Allowed loss	3-(-32) dBm	35
Source connector loss	1 dB	34
Jumper+ Connector loss	3+1 dB	30
Cable attenuation	18 dB	12
Jumper+Connect or loss	3+1 dB	8
Receiver Connector loss	1 dB	7(final margin)

Rise Time Budget

- Total rise time depends on:
 - Transmitter rise time (t_{tx})
 - Group Velocity Dispersion (t_{GVD})
 - Modal dispersion rise time (t_{mod})
 - Receiver rise time (t_{rx})

$$t_{sys} = \left(\sum_{i=1}^{N} t_i^2\right)^{1/2}$$

Total rise time of a digital link should not exceed 70% for a NRZ bit period, and 35% of a RZ bit period

Two-level Binary Channel Codes

Rise Time

The response of the receiver front end is modeled by 1st order lowpass filter with a unit step response:

$$g(t) = \left[1 - \exp(-2\pi B_{rx}t)\right] u(t)$$

where B_{rx} denotes the 3-dB electrical bandwidth. The rise time *t* is defined as the time interval between g(t) = 0.1 and g(t) = 0.9, 10- to 90-percent rise time, thus

$$t_{rx} = \frac{350}{B_{rx}}$$
 where B_{rx} has unit MHz and t_{rx} has unit ns.

The rise time due to GVD over a length L is approximated by

$$t_{GVD} = |D| \sigma_{\lambda} L$$
 σ_{λ} : half-power spectral width of the source

Modal Dispersion Rise Time

Assume optical fiber has a Gaussian temporal response and its Fourier transform given below:

$$g(t) = \frac{1}{\sqrt{2\pi\sigma}} e^{-t^2/2\sigma^2} \xrightarrow{\mathfrak{F}} G(\omega) = \frac{1}{\sqrt{2\pi}} e^{-\omega^2 \sigma^2/2}$$

The time $t_{1/2}$ required for the pulse to reach its half-maximum value is:

$$g(t_{1/2}) = 0.5g(0) \rightarrow t_{1/2} = (2\ln 2)^{1/2}\sigma$$

If $t_{\rm FWHM}$ is defined as the time when the full width of the pulse is at its half-maximum, $t_{\rm FWHM} = 2t_{1/2} = 2\sigma(2\ln 2)^{1/2}$

The 3-dB optical bandwidth is related to t_{FWHM} by

$$\omega_{3dB} = \frac{\sqrt{2\ln 2}}{\sigma}; f_{3dB} = B_{3dB} = \frac{\sqrt{2\ln 2}}{2\pi\sigma} = \frac{0.44}{t_{\text{FWHM}}}$$

Let t_{FWHM} be the rise time resulting from modal dispersion,

$$t_{\rm mod} = t_{\rm FWHM} = \frac{0.44}{B_{\rm M}}$$

Since the bandwidth B_M can be approximated by the empirical relation: $B_M = \frac{B_0}{B_0}$

$$B_M = \frac{B_0}{L^q}$$

where B_0 : bandwidth of a 1-km cable, q: modal equilibrium factor, range [0.5 (steady-state modal equilibrium,1 (little mode mixing)], 0.7 is reasonable.

$$t_{\rm mod} = \frac{0.44}{B_{\rm M}} = \frac{0.44L^q}{B_0}$$

If t_{mod} has unit ns, and B_M has unit MHz,

$$t_{\rm mod} = \frac{440}{B_{\rm M}} = \frac{440L^q}{B_0}$$

Dispersion Analysis (Rise-Time Budget)

$$t_{sys} = [t_{tx}^{2} + t_{mod}^{2} + t_{GVD}^{2} + t_{rx}^{2}]^{1/2}$$
$$= \left[t_{tx}^{2} + \left(\frac{440L^{q}}{B_{0}}\right)^{2} + D^{2}\sigma_{\lambda}^{2}L^{2} + \left(\frac{350}{B_{rx}}\right)^{2}\right]^{1/2}$$

Example 8.3: Rise-time budget for a multimode link

LED : rise time 15 ns; spectral width 40 nm;

Fiber : material-dispersion related rise time 21 ns over 6 km link; 400 MHz·km bandwidth-distance product, $q = 0.7 \rightarrow t_{mod} = 3.9$ ns Receiver : 25 MHz bandwidth $\rightarrow t_{rx} = 14$ ns

$$t_{sys} = [t_{tx}^2 + t_{mod}^2 + t_{GVD}^2 + t_{rx}^2]^{1/2} = [15^2 + 3.9^2 + 21^2 + 14^2]^{1/2} = 30 \text{ ns}$$

For 20 Mb/s NRZ system, $T_{b,NRZ} = 50$ ns. Thus, $t_{sys} < .7T_{b,NRZ}$ and the rise-time requirement is met.

Example 8.4: Laser Tx has a rise-time of 25 ps at 1550 nm and spectral width of 0.1 nm. Length of fiber is 60 km with dispersion 2 ps/(nm.km). The InGaAs APD has a 2.5 GHz BW. The rise-time budget (required) of the system for NRZ signaling is 0.28 ns whereas the total rise-time due to components is 0.14 ns. (The system is designed for 20 Mb/s).

The total rise time is 142.7 ps

For a 2.5 Gb/s NRZ system, $T_{b,NRZ} = 400$ ps. Thus, $t_{sys} < .7T_{b,NRZ}$ and the rise-time requirement is met.

Transmission Distance for MM-Fiber in short-wavelength band

NRZ signaling, source/detector: 800-900 nm LED/pin or AlGaAs laser/APD combinations. BER= 10^{-9} ; LED output=-13 dBm;fiber loss=3.5 dB/km;fiber bandwidth 800 MHz.km; q=0.7; 1-dB connector/coupling loss at each end; 6 dB system margin, material dispersion ins 0.07 ns/(km.nm); spectral width for LED=50 nm. Laser ar 850 nm spectral width=1 nm; laser ouput=0 dBm, Laser system margin=8 dB;

Transmission Distance for a SM Fiber Link

 Communication at 1550 nm, no modal dispersion, Source:Laser; Receiver:InGaAs-APD (11.5 log *B* -71.0 dBm) and PIN (11.5log *B*-60.5 dBm); Fiber loss =0.3 dB/km; D=2.5 ps/(km.nm): laser spectral width 1 and 3.5 nm; laser output 0 dBm,laser system margin=8 dB;

Data rate (Mb/s)

Power Penalties

- Power penalty is the reduction in SNR due to signal impairments in optical fiber transmission systems.
- For example, interactions between spectral variations and imperfections in a dispersive fiber can produce time-varying changes in the light at the receiver, which can lead to receiver output noise.
- It is defined as

$$PP_x = -10\log \frac{\text{SNR}_{\text{impair}}}{\text{SNR}_{\text{ideal}}}$$

Chromatic Dispersion Penalty

- Chromatic dispersion = each wavelength travels at a different velocity in a fiber.
- Causes pulse spreading.
- Total dispersion must be kept under some "tolerance" or dispersion compensation must be employed.
- ITU-T Recommendation for SDH : for a 1-dB power penalty the accumulated dispersion should be less than 0.306 of a bit period, i.e.,

$$D_{CD} | L\sigma_{\lambda} < \varepsilon T_{b} \rightarrow | D_{CD} | L\sigma_{\lambda} B < \varepsilon = 0.306$$

• For example, $D_{CD} = 8 \text{ ps/(nm \cdot km)}$, B = 2.5 Gb/s, $\sigma_{\lambda} = 0.2 \text{ nm}$, then the maximum allowed length L = 76.5 km.

Polarization-Mode Dispersion Penalty

- Light signal at a given wavelength in a single-mode occupies two orthogonal polarization modes.
- Each mode can travel with different velocity resulting in pulse spreading.
- PMD fluctuates with temperature variations and stress changes, and varies as the square root of distance.
- To have a power penalty below 1 dB, the pulse spreading must be less than 10% of a bit period, i.e.,

$$\Delta \tau_{PMD} = D_{PMD} \sqrt{L} < 0.1 T_b$$

• For example, $D_{PMD} = 0.5 \text{ ps/km}^{1/2}$, L = 100 km, $\Delta \tau_{PMD} = 5 \text{ ps}$. The maximum data rate $B = 1/T_b = (50 \text{ ps})^{-1} = 20 \text{ Gb/s}$.

Extinction Ratio Penalty

- The extinction ratio r_e in a laser = ratio of optical power level P_1 for logic 1 to that for logic 0, P_0 .
- Ideally, $P_1 = 2 P_{ave}$ and $P_0 = 0$, but practically, the ratio is finite to reduce the rise time.
- Assume a non-zero $P_{0-\text{ER}}$, then $r_e = P_{1-\text{ER}}/P_{0-\text{ER}}$ and

$$P_{ave} = \frac{P_{1-ER} + P_{0-ER}}{2} = P_{1-ER} \frac{r_e + 1}{2}$$

• When receiver thermal noise dominates, 1 and 0 noise powers are equal and independent of signal level. Here, let $P_0 = 0$ and $P_1 = 2$ P_{ave} , then $P_{ave} - P_{ave} = r - 1$

$$PP_{ER} = -10\log\frac{P_{1-ER} - P_{0-ER}}{P_1 - P_0} = -10\log\frac{r_e - 1}{r_e + 1}$$

• $r_e = [7,10] \rightarrow PP_{ER} = [1.25,0.87] \text{ dB}; r_e = 18 \text{ is needed for } 0.5 \text{ dB}$ power penalty.

Modal Noise

- In MM fiber, more than one mode propagating -> speckle pattern;
 # of speckles ≈ # of modes.
- Mode-dependent losses, changes in phase between modes, fluctuations in the distributions of energy among modes -> different speckle pattern
- Modal (Speckle) Noise : Speckle-pattern dependent loss.
- Fluctuations in frequency also causes intermodal delays. If coherence time > intermodal dispersion -> speckle pattern.
- If $1/\delta v$ (coherence time) << δT (intermodal dispersion time), modal dispersion due to interference between 2 modes -> sinusoidal ripple with frequency

$$v = \delta T \, \frac{d \, v_{source}}{dt}$$

Modal Noise (2)

- To avoid modal noise,
 - Use LED with MMF
 - Use a laser with large number of modes
 - Use a MMF with large NA
 - Use single mode fiber with laser

Modal noise at a connection of a SMF

Repair section

Mode Partition Noise

- This is the dominant noise in single mode fiber coupled with multimode laser
- Mode partition noise is associated with intensity fluctuations in the longitudinal modes of a laser diode
- Each longitudinal mode has different λ , power fluctuations can be large.
- The SNR due to MPN can not be improved by increasing the signal power.
- Approximation:

$$PP_{mpn} = -5\frac{x+2}{x+1}\log\left[1-\frac{k^2Q^2}{2}(\pi BLD\sigma_{\lambda})^4\right]$$

k : mode-partition noise factor, range 0.6-0.8.

Dynamic spectra of a laser

Chirping

- Chirping is a *line broadening* effect of a laser, caused by laser instability or modulation.
- The time-dependent frequency change is given by

$$\Delta v(t) = \frac{-\alpha}{4\pi} \left[\frac{d}{dt} \ln P(t) + \kappa P(t) \right]$$

where α is *linewidth enhancement factor* (-3.5~-5.5 for AlGaAs), κ is frequency-dependent factor.

- Increase bias level -> reduce rate of change of $\ln P(t)$ and P(t)
- Estimated power penalty

$$PP_{chirp} = -10\frac{x+2}{x+1}\log(1-\Delta)$$

where *x* : excess noise factor

eye closure
$$\Delta = \left(\frac{4}{3}\pi^2 - 8\right) t_{chirp} DLB^2 \delta\lambda \left[1 + \frac{2}{3}\left(DL\delta\lambda - t_{chirp}\right)\right]$$

Chirping & extinction-ratio penalties; Effects of Chirping

Reflection Noise

• Reflections occur at discontinuities, e.g., splices, connectors, couplers, etc.

• Reflected power causes optical feedback leading to laser instabilities, which give rise to power fluctuations, jitter, wavelength change, etc.

- SNR changed -> Intensity noise + Intersymbol interference
- Keeping return losses below -15 to -32 dB for 500 Mb/s to 4 Gb/s.

