Excerpt from Pollock’s Fundamentals of Optoelectronics
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Figure 5.1 The cylindrical step waveguide consists of a
high-index core surrounded by a lower-index cladding.

To find the modes of the circular step-index fiber, we must solve the wave equa-
tion in cylindrical coordinates. The modes of the cylindrical structure are more
abstract than those of the rectangular or planar structure. Once the mode concept
is established, we will develop useful formulas for mode-cutoff conditions, numer-
ical aperture, and normalized frequency. As before, the eigenvalue equations will
require graphical or numerical solution.

5.2 THE WAVE EQUATION IN CYLINDRICAL COORDINATES

We have already derived the homogeneous wave equation,

O*E
VE — ue— =0 )
;Leatz é.1)

for the planar waveguide structure (Equation 1.24). If we assume a time-harmonic
field, and use |kl = V upew (assuming u = o), the wave equation takes the
familiar form

VE + kK3n*E =0 (5.2)

To solve this equation in a cylindrical waveguide, we must write this equation in
cylindrical coordinates. The electric field is a vector, and there are three compo-
nents, each of which is a function of r, ¢, and z:

E(r, ¢,2) = FEAr, ,2) + QEHr, b, 2) + ZE(r, ¢, 2) (5.3)

In cylindrical coordinates, the vector Laplacian (V?) is a rather unwieldy expres-
sion (see for example reference [1]). The cylindrical wave equation must be evalu-
ated in the following form:
FE

V(V-E)—VXVXE—Me?=0 5.4)
Unlike the vector Laplacian in rectilinear coordinates, Equation 5.4 cannot be eas-
ily decomposed into three individual components. The transverse components of
the field are tightly coupled. Imagine for example a linearly polarized field travel-
ing at a slight angle to the axis of a cylindrical waveguide, as shown in Figure 5.2.
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At z = 0, the field is purely radial, but as it travels down the axis, it becomes an
azimuthal (¢) field. It is impossible to decouple the E, or E, components in this
example.
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Figure 5.2 A radial field at one point in the waveguide will become an
azimuthal field at another location. Notice that the field is not converted
between the components by reflection, but by propagation through the
coordinate system.

Here is an important point: the £ component of a field, E,, does not couple to
the two other components as it propagates. Even after reflection at a cylindrical
surface, the E, component remains oriented along the z axis. Figure 5.3 shows an
example of how the field component remains pure.

Ez

Figure 5.3 The longitudinal component of the electric field
does not change through either propagation or reflection at the
cylindrical surface.

Since E, couples only to itself, it is possible to write the scalar wave equation
for E, directly in cylindrical coordinates,

19 ( 9E, 1 YE, & E,
L Tt

ar r? a¢ 0z
and to solve this equation for E,. Once we have a solution for E(r, 6, ¢), we can

use Maxwell’s equations to relate E, to E, and E. In this indirect fashion, all field
components within a circular waveguide are derived.

+ Kn’E, = 0 (5.5)

r or

5.3 SOLUTION OF THE WAVE EQUATION FOR E,

Since E, is a function of r, ¢, and z, we can employ separation of variables to solve
the scalar equation, Equation 5.5. Setting E(r, ¢, z) = R(r)®(¢)Z(z), and substi-
tuting this into Equation 5.5 results in



1 - '
R"®Z + lR’CI)Z + SRD"Z + ROZ' + IGn*RPZ =0 (5.6)
r r

Multiply Equation 5.6 by 7%/R®Z to get

RII RI ¢II ZII
2 2 2.2
rP—+r—+—+r’ =+ KBn?=0 5.7
R 'R @ z >.7)
Due to the translational invariance along the z axis, we can assume a phase term
describes the z dependence,

Z(z) = e 7Pz (5.8)

where B is (again) the z component of the wavevector k in the waveguide. Using
Equation 5.8, we find that Z"/Z = — Bz, which can be substituted into the wave
equation

o
rP—+r—+——-rp2+ kn’?=0 (5.9)

Now we can use standard separation techniques to find

R” R, (D”
r2; e r’B? + kgn*r? = e 2 (5.10)

The term v is called the separation constant. Equation 5.10 can be solved directly
for ®(¢):

(@) = —v>® 5.11)
which has the solution
d(p) = Ae’™? + c.c. (5.12)

where A 1is a normalization constant. Since circular symmetry requires
®(p) = O(¢p + 2m), we can infer that v must be an integer.

Substituting Equation 5.11 into Equation 5.9 yields an equation that only con-
tains R(r):

2
r2—2 + r; + r2 (k%nz — 32 - 12_) R=0 (513)
r

The solution to this differential equation is given by Bessel functions [2]. There
are many different types of Bessel functions, and to the uninitiated the choice can
look formidable. Bessel functions share these properties with sine and cosine func-
tions: 1) the value of the function must be calculated or looked up in a table;
2) the functions are orthogonal to one another; and 3) they are defined everywhere.
It is primarily the lack of familiarity with Bessel functions that causes trepidation.
Appendix B, “Bessel Functions,” reviews useful relations and properties of rele-
vant Bessel functions.

Two types of Bessel functions solve Equation 5.13. When the argument
2

4 . .. . .
k3n* — B2 — —2> is positive, Bessel functions of the first kind of order v, sym-
r
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bolized by J,(kr) are the proper solution. For all cases that we will examine, v is
an integer. « is defined through the expression

K2 = K3n? — B? (5.14)

Note that this is the same definition used in Chapter 3 for the transverse wave-
vector. The symbol « has the same meaning in these cylindrical waveguide

equations.
2

When the argument <k(2)n2 - B% - V—?_) in Equation 5.13 is negative, modified
r

Bessel functions of the second kind of order v, symbolized by K,(vyr), are the
proper solution. vy is defined as

y? = B* - ign? (5.15)

Again, the notation is intentionally chosen to correspond to the decay parameter y
used in Chapter 2. As with k, the function y plays the same role in cylindrical
waveguides that it did in planar waveguides.

Plots of both types of Bessel functions are shown in Figure 5.4 below. The J,
(kr) functions are periodic along the radial axis. Only Jy(«r) has finite value at
r = 0; all other J,.q(kr) functions are zero at the origin. For large arguments, the
Bessel function of the first kind can be approximated as

[ 2
J(kr) =~ \[——cos | kr — L) for kr large (5.16)
TTKF 2 4

These Bessel functions can be viewed as damped sine waves. The amplitude de-
creases slowly with radial distance, much like the amplitude of a spreading wave in
a pond. As we shall see, the J, Bessel functions describe the radial standing wave
in a cylindrical structure.

1.0
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Figure 5.4 Graphs show the first three Bessel functions of the first kind, J, (kr), and of the second kind, K, (yr).

The modified Bessel functions K,(yr) display a monotonic decreasing charac-
teristic. The higher orders of the function decrease at a slower rate, but all orders
have the same functional form. In the limit of large <yr, the function can be ap-
proximated as
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K, (yr) = 6.17)

N(\
ﬁ
<2

Again, this looks like a radially damped, exponentially decreasing function. Note
that at large distance, all orders of K,(yr) look approximately the same. The
V 1/27yr dependence is the natural decrease of a wave as it expands with radius,
while the exponent represents decay due to evanescent interference. K, (yr) func-
tions are used to describe evanescent fields in the optical waveguide.

5.4 FIELD DISTRIBUTIONS IN THE STEP-INDEX FIBER

In this and the next section, we derive expressions for the fields and the character-
istic equation for the cylindrical dielectric waveguide. Consider the fiber wave-
guide shown in Figure 5.5. The fiber waveguide has a core of radius a surrounded
by a cladding with lower index. Since we expect oscillatory solutions to the trans-
verse wave equation in the core, J,(kr) solutions will be sought in this region. From
Equation 5.14, B must satisfy

kOncore > B > kOnclad (5 18)

which is the standard criteria for guided wave modes.

In the cladding, the field exponentially decays, so we choose the K, (yr) solu-
tions for r > a. The only criteria on the size of the cladding is that the evanescent
field should decay to negligible values long before the outer radius of the cladding
is reached.

Core 9

Cladding

Figure 5.5 The cylindrical waveguide
has a core radius of dimension a.

Let’s construct a solution to the wave equation. The complete longitudinal fields
(E, and H,) in both regions can be written as
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forr <a E(r,¢,2) = Al (kr)e!"®e 7P + ¢ c.
H/r, ¢, 2) = BJ,(kr)e/"?e™P% + c.c.
(5.19)
forr>a E/[r, ¢, 7) = CK (yr)e’"Pe 7P% + c.c.

H/(r, ¢, 2) = DK, (yr)e’"®e7P* + c.c.

Note that the electric and magnetic fields have the same spatial dependence. Also
note that v is a mode number, or eigenvalue. Determining the coefficients A, B, C,
and D requires application of the boundary conditions, specifically, continuity of
the tangential E and H fields. The next few steps involve a lot of mathematics, but
are necessary to derive the eigenvalue equation for the step-index fiber. Matching
boundary conditions requires that we know the azimuthal field components E, and
H ,, in addition to the longitudinal components E, and H,. We can get the azimuthal
components in terms of E, from Maxwell’s equations:

oB oH
VXE=—=—u—=—pjoH 5.20
o Ly M (5.20)

Expanding the V X E terms in cylindrical components, and then collecting terms,
the field components H,, H,, E,, and E, can be described [3] in terms of the lon-
gitudinal components:

—j [ BOE, oH,
Eyj=—=S\—"7F—op—
¢ a? (r oo Hor
—j oH oE
Er — .__% (.’:L_(_u___é + B__E)
a r d¢ or (5.21)
—j oE oH
H¢ = - <w€____z E Z)
a or r d¢
—j [ oH oE
Hr — .__J_ ﬁ——z' — 9_6._.._2.
a ar r da¢

where a? stands for k3n> — B2. Note that a? is a positive quantity in the core, and
a negative quantity in the cladding for allowed values of .

Using the longitudinal fields described in Equation 5.19, the field components
in Equations 5.21 can be exactly calculated. In the core region (r < a) we get
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E, = 28| awsinr) + 2228 cr) |eivtemin
K° | Br i
E,= _—J2B ]—VAJ,,(Kr) - %BKJ,:(KI‘) e/"be Iz
K™ |Lr B i
. B . T
- , €.ore , .
H, = 2B | Bicsi(kr) —1250¥s 5 (ery | eivdeie
K i Br )
H,= 123 LBy (k) + MAKJ,:(KT‘) e/vte B
K° | r B )
where J, (kr) = dJ,(kr)ld(kr).
In the cladding region (r > a) we get
. B ’ .w V 7 ' .
E, =2 | Cokim +L22DK () | ervtese:
v L pr i
Ey =5 | Zek m — LDyki(m) | /e
YL B i
iBl W€ gugv 1 ..
H, =5 | DYK,(yr) ———#=CK () | &"e ¥
v L pr |
Hy = J_’; Zpk () + %’CVKL(W) e/"Pe P
Y LT i

where K, (yr) = dK,(yr)ld(yr).

5.5 BOUNDARY CONDITIONS FOR THE STEP-INDEX

WAVEGUIDE

(5.22)

(5.23)

To determine the propagation constant 8 and the amplitude coefficients A, B, C,
and D of Equation 5.19, we need to apply the boundary conditions. The boundary
conditions at r = a require that the four tangential components E,, E, H, and H,
be continuous at the core-cladding boundary. For example, the longitudinal electric
field must satisfy AJ, (ka)e’”%e /P? = CK (ya)e’”%e /P~ The simplest way to si-
multaneously satisfy all four boundary-value equations is to write the four linear
equations in matrix form, and then set the determinant of the matrix equal to zero.

J,(ka) 0
0 J,(ka)
By ay k)
akKk K

2eoreprieay P (ka)
K akK

-J

—K,(va)
0

E%K »(va)
ay

WE jqg K: (’ya)

0

—K,(ya)

O,
J—K,(va)
Y

Bv

a‘y2

K, (ya)

A
B

c

D

—

=0 (5.24)

For nontrivial solutions (i.e., nonzero amplitudes), the four equations will simulta-
neously equal zero if and only if the determinant of the matrix equals zero. Expan-
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sion of the determinant yields the ‘“characteristic equation” for the step-index
fiber.

B [ 1.1 ]2_ [ Jka) | K,:wa)]
| -
|k, (ka) YK, (ya)
_k%ngore']:/(Ka) + kgngladK:/('ya)
KJ,(xa) VK, (va)

(5.25)

This formidable equation requires numerical or graphical solution. There is only
one unknown: B. As with the slab waveguide, the terms « and vy are functions of
B and the local index. Due to the oscillatory nature of J,(ka), there can be several
values of B for a given structure. Since there are two dimensional degrees of free-
dom in the cylindrical waveguide, solutions to the wav?iquation are labeled with
two indices, v and m. Both numbers are integers. The m value is called the radial
mode number, and represgnts the number of radial nodes that exist in the field
distribution. The integer v is called the angular mode number, and represents the
number of angular nodes that exist in the field distribution.

Once B is determined from Equation 5.25, three of the coefficients (A, B, C,
and D) can be determined in terms of the fourth by solving the individual equations
of the matrix. For example, from the boundary condition for continuity of E, at
r = a,

Al (ka) = CK (ya) (5.26)

One can solve for coefficient C in terms of A

J,(ka)
C= (5.27)
K, (ya)
Similarly D can be solved in terms of B
J,(ka)
D=——B (5.28
K, (ya) )

The coefficients A and B can be related to one another using the continuity of E
or H,, and Equations 5.27 and 5.28. Using the electric field continuity, one gets

) , , -1
p=1f [—1- + i] [ hika) | K, (ya) ] A (5.29)

wpa | K* ¥ | [kl (ka) YK, (va)
If the magnetic field continuity is used, one gets

. 2 ' 2 ’ -1
_ JWA | Neore J,,(Ka) + Pclad KV(ya) _1.. + —12- A
Bv| k J(ka) vy K,(ya)

k2
The choice of which equation to use depends on the type of mode carried in the
waveguide. This is explained in the next section. Note that B/A is purely imaginary

in both cases, indicating that the two longitudinal fields are 7/2 out of phase. On
8
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an instantaneous basis, there is radial power flow, but due to the 7/2 phase shift
the power is reactive, so it averages to zero.

5.6 THE SPATIAL MODES OF THE STEP-INDEX WAVEGUIDE

Unlike the slab waveguide with only two possible types of mode (TE or TM), the
circular waveguide has four types of mode. The quantity |B/A| is of particular
interest in determining the relative size of the longitudinal components of the E and
H fields. These, in turn, characterize the type of mode. We will start with the
simplest mode.

5.6.1 Transverse Electric and Transverse Magnetic Modes

Consider the characteristic equation (Equation 5.25) for the case where y = 0.
Since v represents angular dependence of the solution, the field solutions to E,
when v = 0 will be rotationally invariant. The equation simplifies to

[ Jka) , K(ya) ] [k%n%mf;(m) + Bk, (va)
kl(ka) VK, (va) «kJ,(ka) YK, (ya)
Either term on the left-hand side can be set to zero to satisfy the equation. The
two terms in Equation 5.31 appeared individually in Equations 5.29 and 5.30,
where the amplitude A was related to amplitude B. If the first term of Equation
5.31 is set to zero, then A must also be zero to keep the magnitude of B in Equation
5.29 finite. If A = 0, then E, = 0, and the electric field will be transverse. Such
modes are called TE modes.

Conversely, if the second term in Equation 5.31 is zero, then the amplitude B
will be zero (see Equation 5.30), and the longitudinal component of the H field will
be zero. The solution will therefore be a TM mode. Thus, if v = 0, the allowed
modes will be either TE or TM.

The problem of finding the allowed values of the propagation vector 8 reduces
to finding the roots of Equation 5.31. These equations for the TE and TM modes
can be further simplified using the Bessel function relations (see Appendix B):

] =0 (5.31)

JI'I JVII .

— = * + 3

KJ,, KJV K (532)
KI'/ Kvtl

=2

YK, YK, v

Consider first the TE mode. The first term of Equation 5.31 should be set equal to
zero. Using the relation in Equation 5.32, the eigenvalue equation for TE modes
becomes

|
1

_Jilka)  Ki(va) _
klo(ka)  vKo(ya)
The other half of Equation 5.31 is the eigenvalue equation for TM modes. These

can be solved numerically or graphically. We will use Mathematica to do both in
the following example of a TE mode.

(5.33)



Example 5.1 Eigenvalues for the TE Modes in a Step-Index Fiber

Let’s analyze a step-index circular fiber with a core index n.,,, = 1.5, a cladding index
n.eq = 1.45, and a core radius @ = S5um. The wavelength of the light is 1.3um. We want
to determine the allowed eigenvalues for B for the TE modes. A simple Mathematica
command evaluates and plots the two terms in Equation 5.33.

k=2 Pi /(1.3 10" (-4));

a=5 10"(-4);

n1=1.5;

n2=1.45;

kappamax=Sqrt[k~2(n1+2-n2-2)];

gamma = Sqrt[ kappamax“2-kappa“2];

Plot[{BesseldJ[1, kappa a]/(kappa BesselJ[0, kappa al), -BesselK[1, gamma a]/
(gamma BesselK[O0, gamma a])}, {kappa, 0, kappamax}]

The graphical output is presented in Figure 5.6. As in previous chapters, we chose to plot
the functions against the transverse wavevector k, instead of against 8. The plot extends
from « = 0 to K,,,,, Which is given by

2 - k(z)n%lad a (5.34)

core

Kmaxd = \/k(z)n

The Ji(ka)/kJo(ka) term explodes to infinity at every root of Jy(ka). Since the roots of
Jo(ka) occur (almost) periodically, the ratio J,/J, regularly sweeps from — to +. The
K,/K, term monotonically decreases as « increases.

0.002f

+—— J1 (Ka)/ KJo(Ka)

0.001
0 K
-0.001
<*+— Kj(ya)lyKy(ya)
-0.002|-

Figure 5.6 The eigenvalue equation is plotted against x for a waveguide with core index 1.5,
cladding index 1.45, and wavelength 1.3 um.

Every time the two lines cross in Figure 5.6, there is an allowed TE mode. In this case,
three TE modes are allowed, with approximate « values of 7,000, 12,500, and 17,500cm ™.
The exact values are easily found using a root-finding command. In Mathematica, the ap-
propriate command is

FindRoot[-BesselK[1, gamma a]/(gamma BesselK[0, gamma a])==
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BesselJ[1,kappa a]/(kappa Besseld[O, kappa a]), {kappa, 5200}]

The exact values for this example are k = 6,902, 12,549, and 17,795cm™ L. The correspond-
ing values of B can be determined from Equation 5.14.

The transverse modes (TE and TM) have no azimuthal structure (v = 0). We
will look at the field solutions in a later section, but in the ray picture these modes
are geometrically represented by meridional rays. As seen in Figure 5.7, the ray
associated with these modes travels through the origin, r = 0.

2
VARV,

Meridional Ray (TE or TM Modes)

Figure 5.7 A meridional ray zigzags down
the fiber, passing through the origin. There
is no angular rotation of the ray path as it
propagates.

5.6.2 The Hybrid Modes

When v # 0, the characteristic equation is a little more complicated to solve. The
values of B will correspond to modes which have finite components of both E, and
H,, and are therefore neither TE nor TM modes. These modes are called EH or
HE modes, depending on the relative magnitude of the longitudinal £ and H com-
ponents [4, 5].

ifA=0 then the mode is called a TE mode

ifB=0 then the mode is called a TM mode
ifA>B then the mode is called an HE mode (E, dominates H,)

ifA<B then the mode is called an EH mode (H, dominates E,)

The EH and HE modes are called hybrid modes because they have both longitu-
dinal H and E components in the waveguide. The EH and HE modes exist only for
v 2 1, so they have azimuthal structure. In the ray picture, these modes are called
skew rays, because they travel down the waveguide in a screw-like pattern (Figure
5.8), glancing off the interface as they spiral down the axis. The azimuthal struc-
ture is apparent from the cyclical path of the ray.
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) O

Skew Ray (EH or HE Mode)

Figure 5.8 A skew ray travels in a spiral
path down the fiber. The ray does not go
through the origin.

The EH and HE modes have complicated field patterns. These patterns are not
only difficult to determine, but they are hard to visualize. Because of this, and the
limited utility derived in actually graphing such distributions, we will not pursue
their description. Instead, the next subsection develops a useful approximation that
simplifies both the calculation and visualization of the hybrid modes.

5.6.3 The Linearly Polarized Modes (LP Modes)

The characteristic equation for the hybrid modes is difficult to solve for B. Fortu-
nately, a very simple and reasonable approximation makes solution straightforward
[6]. Consider again the characteristic equation, Equation 5.25:

@_@_%[L+L]2= [ Jka) KL(W)]
@ |y K | K/, (ka) YK, (va) (5.25)
| KnEore ], (ka) k%nfladK;wa)]
«J,(ka) YK.(ya)
For v =1, 2, ..., HE and EH modes are possible. Unfortunately, even with

powerful software, finding the roots of this equation is very difficult. Dramatic
simplification occurs if we make the weakly guiding approximation. For many
practical optical fibers, the core and cladding index are nearly identical. Typical
commercial fibers have An = n,,, — n..q on the order of 0.001-0.005. In view of
this, it is not unreasonable (at least for the purpose of finding roots) to approximate
that the core and cladding index are identical, n.,,, = n.,; = n. This approxima-
tion will introduce an error on the order of less than 1 part per thousand in the
actual value of the propagation vector, but will enable easy solution of the problem.
In the weakly guiding approximation, Equation 5.25 reduces to

g1 1] [swa Ko ] .,
a’ [72+K2] _[KJV(Ka)+yKV(7a)] Ko ©-33)

This can be further simplified, noting that if n.,,, = ., then B = k3n?, and
these terms can be canceled from both sides. Taking advantage of some Bessel
function identities, -

Joz1 ¥ K(ya) K,.i(ya) _ v

J.(ka) N
—_— = * d = 5.36
ka)  raa)  wa M IKGw)  yaK,(a)  ya OO

simplifies Equation 5.35, leaving only
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Jvi‘l(Ka) — -_'—_Kvi'l(‘ya)

kJ,(ka) YK, (ya)

(5.37)

These are the characteristic equations for the EH (top sign) and HE (bottom sign)
modes. Solution will yield the eigenvalues for the allowed modes. A little more
manipulation with Bessel function identities reduces these two equations into one
single equation [7]:

- K;_1(ya)
i G 5.38
swa K om ©-38)

The indices define the mode as follows:

j=1 TE, TM modes
j=v+1 EH, modes

j=v—1 HE, modes

More than one mode has the same eigenvalue, or, mathematically speaking, differ-
ent modes are degenerate. In the weakly guiding approximation, the TE,,, is de-
generate with the TM,,, mode. These modes will have the same eigenvalue, 8, and
will propagate at the same velocity (at least to the accuracy of the weakly guiding
approximation). Also, the HE , ; ,, modes and EH,,_, ,, modes are degenerate.

Since degenerate modes travel at the same velocity, this degeneracy in 8 makes
it possible to define stable superpositions of different modes. Certain combinations
of degenerate modes can be found which are linearly polarized. Furthermore, the
superpositions are primarily transverse, meaning E, is negligible. This is best illus-
trated by example. We will take a back door approach to creating a superposition
that leads to a linearly polarized mode by initially assuming that a mode has a
transverse field configuration, and then deriving what the longitudinal mode struc-
ture must be.

5.7 THE NORMALIZED FREQUENCY (V NUMBER)
AND CUTOFF

Often we are concerned whether a given mode will propagate within a fiber. For
example, we might need a single mode fiber for an experiment using a visible laser,
such as the HeNe laser operating at A = 633nm, but all we can find is single-mode
fiber that is designed for operation at 1.3um. How can we determine if this fiber
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will be satisfactory? To answer this, we need to develop what are known as cutoff
conditions, which determine under what circumstances a mode will propagate in a
fiber.

The characteristic equation (Equation 5.25) contains a term with the ratio of
Bessel functions, J,. 1/J,. This term explodes to infinity at each root of J,. This was
demonstrated in Example 5.1. To ensure that there is at least one solution to the
equation, the argument xa must extend beyond the first of these roots. Each time
ka increases beyond another root of J,./J,, another mode will be allowed. The
roots of the Bessel functions are good signposts for establishing mode cutoff
conditions.

We can generalize the cutoff conditions for the modes in terms of the roots of
the appropriate Bessel function. For example, referring back to Figure 5.6, it is
clear that no TE mode will exist if ka< 2.405. The TE(,; can only exist if
ka > 2.405, so we say that the cutoff condition for the TE;; mode is ka = 2.405.
The cutoff condition for the TEy, mode occurs at the second root of the Bessel
function, Jy(ka), which occurs 5.520. The cutoff conditions for every variety of
mode can be found in a similar fashion. These cutoff conditions are:

TE,,, modes ka > m™ root of Jo(ka)
HE,,, mode ka > m" root of J,(ka)
EH,,, mode ka > m™ root of J (ka)

with the added constraint that the first root is not O

ecore Ka
HE,,, modes (-—— + 1) J,—1(ka) = ——J (ka)
€.lad v—1

Figure 5.11(a) shows a plot of the first three Bessel functions, with notations on
the cutoff points for a few modes. For example, if ka is greater than 2.405, then

1.0

1+ HE 5
0 0 —t I +
1 2| 3
§ HEq
-0.5L HE" TE01 TE02 TE03 oL
TMo4 TMg2 TMo3

(a) (b)

Figure 5.11 The first three J, Bessel functions are plotted, with the mode cutoff conditions of a few modes indicated at the
various roots of the curves. The condition 2J,(ka) = kaJy(ka) is plotted for the HE,,, mode cutoff conditions. Cutoff occurs
where the curves cross.

the TE,;, TMy;, and HE,; modes will be allowed. This is in addition to the HE;
mode, which is always allowed. The HE;; mode is a special case which is de-
14



scribed in the next section. The HE,,, modes have a complicated cutoff formula
which requires knowledge of the refractive indices of the core and cladding. In
most cases, the ratio can be approximated as unity. Figure 5.11(b) shows the cutoff
conditions for the HE,,, modes.

The parameter used to characterize a waveguide is the normalized frequency or
the V number. For a cylindrical fiber, the V number is defined as «,,,,a.

\/_2__~—’2_ 27Ta\/_2_—_—2_
V number = akO Reore — Nelad — T Neore — Nelad (550)

where a is the core radius. The normalized frequency provides a quick way to
determine the number of modes in a waveguide, and is often used as a specification
for optical fibers and devices. The cutoff conditions can all be evaluated once the
V number of a fiber is given.

Example 5.3 Number of TE Modes in a Step-Index Fiber

Consider a step-index fiber that has a core index n.,, = 1.45, a cladding index
n..q = 1.44, and a core radius of 25um. If the excitation wavelength is 1.5um, how many
TE and TM modes will exist in the waveguide?

Solution:

First calculate the normalized frequency for the fiber:

2125
v = 2B 15T 1442
1.5um (5.51)

= 17.802

The zeros of the Jy(ka) = 0 occur at 2.405, 5.520, 8.654, 11.791, 14.931, 18.071, etc. (See
Appendix B, “Bessel Functions”.) Clearly, V is larger than the first five roots, but is
smaller than the sixth root at 18.071. So five TE modes (and five TM modes) will be
allowed in this waveguide at that wavelength.

The V number is useful for determining cutoff conditions, as well as a number of
other parameters such as the total number of allowed modes and power profiles.
The V number is often specified in the purchase of optical single-mode fiber. For
example, the cutoff condition for a single-mode fiber occurs when the V number
reaches 2.405 (the first root of the J, Bessel function). The term cutoff refers to
the point where the TE(;, TMy;, and HE,; modes cease to propagate if V becomes
smaller. The wavelength at which a single-mode fiber suddenly becomes multi-
mode is called the cutoff wavelength A..

5.8 THE FUNDAMENTAL HE,; MODE

A mode which deserves special attention is the HE;; mode, sometimes called the
fundamental mode or the LPy; mode. It has no cutoff condition; every step-index
fiber will support at least this mode. The transverse field of the HE;; mode is
described by the J, Bessel function (see Problem 5.11) in the core region, but
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because Bessel functions are not convenient to mathematically manipulate, the
mode field distribution is often approximated by a Gaussian shape,

2
E(r) = Eo-exp[ —(i) ] (5.52)

The parameter w is adjusted to give the best fit between the actual Bessel function

and the Gaussian approximation. For a fiber with a core radius of a, w is chosen
to be [8]

w 3
— =065+ 1619V "2+ 2.87v° (5.53)
a

This approximation provides a good overlap (better than 96 percent) between the
Bessel solution and Gaussian function over the range from 0.8\, to 2A., where A
is the cutoff wavelength.

The amplitude profile for the HE;; mode is shown in Figure 5.12. The distance
between the 1/e points of the amplitude profile define the mode field diameter
(MFD), which is twice the mode field radius, w. When coupling between two sin-
gle-mode waveguides, matching the MFD is a critical parameter to minimize loss.
When the mode is not well described by a Gaussian parameter, definition of the
MFD becomes less clear. Several techniques have been proposed, and are still be-
ing considered for standards [9].

C

Figure 5.12 The electric field of the HE; mode
is transverse, and approximately Gaussian. The
mode field diameter is determined by the points
where the power is down by e~2, or where the
amplitude is down by e~'. The MFD is not
necessarily the same dimension as the core.

The cutoff wavelength defines the boundary between single-mode and multi-
mode operation of a fiber. Wavelengths shorter than the cutoff wavelength can ex-
cite more than one spatial mode. The cutoff wavelength is defined in terms of the
cutoff parameter for the onset of the TE and TM modes, namely V = 2.405,

2ma | s———s—
= - .
)‘c 2.405 Neore Nelaa (5 54)

The HE,;; mode can be polarized in any arbitrary direction in the x—y plane, so it
has a degeneracy of two.
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5.9 TOTAL NUMBER OF MODES IN A STEP-INDEX WAVEGUIDE

For large-core-diameter fibers with many modes, it is possible to provide an ap-
proximate formula describing the total number of modes that will propagate. Recall
the characteristic equation for the LP modes (Equation 5.38):

Ji—1(ka) K;—1(ya)
e o bt 5.38
@ K ©-39)

For values of ka far from cutoff, the term ya will be large, and the asymptotic
value of the K, functions can be used. Since K{(ya) = V @/2yae™ ™ for large «a,
the ratio K;_/K; goes to unity for large arguments. The characteristic equation
reduces to

Ji-i(ka) _ v
%}j(m) = (5.55)

For a given value of v, the number of allowed modes will be proportional to the
number of roots of Ji(ka) between 0 and xka = V. In the approximation that ka is
large, the asymptotic expansion of Ji(ka) can be used:

[ 2
Ji(ka) =~ \[——cos| ka — L) (5.56)
KA 2 4

There will be one root every time the ratio goes to infinity, i.e., each time the
argument increases by . For a given value of », the number of roots will be
approximately

m= (Ka L 7—7)1 (5.57)

Solving this in terms of the normalized frequency V = k,,,a, and ignoring the
7/4 term,

V=1x,.a=Q2m+ V)g (5.58)

This equation, while only an approximation, shows the general relationship be-
tween the azimuthal number v and the number of radial nodes in the mode, m. As
v increases, indicating more angular lobes, the maximum value of m must de-
crease, implying that the radial structure becomes smoother.

Since there is an allowed mode for each value of m and v, we can graphically
plot the number of modes. The largest possible value for m, from Equation 5.58,
is V/m when v = 0. Likewise, the maximum value for v is 2V/m. These allowed
values are plotted in Figure 5.13.

17



rTr<

2VIin KB*—Vmax

Mode Boundary Formed by
V=(v+2m)(n/2)

TT T T T T T TTTT

SN A8 EE ES RS UNDN
AR BB EN AR BN
S AB U s

r
L
2
3

Figure 5.13 In this graphical plot of the allowed
values of » and m for the step-index fiber, the
boundary is determined by the condition listed in
Equation 5.58. The number of points beneath the
curve is proportional to the area of the shaded region.

Each dot in the figure represents an allowed combination of m and v. The total
number of allowed modes is geometrically determined from the area of the trian-
gle, which will be (1/2)M,,, Ve = V2/7%. We must recall that, for each mode,
there are two angular orientations (cosine or sine solution), and two possible po-
larizations (x or y in the LP mode approximation). The number of modes is in-
creased by a factor of four. So the number of allowed modes in a fiber waveguide
is given by the approximation

V2
N= 4—7;-5 (5.59)
Again, we stress this formula is an approximation, and is only good when V is
large.

5.10 POWER CONFINEMENT IN A STEP-INDEX FIBER

The electromagnetic energy of a mode is not totally confined within the core of the
step-index fiber. A fraction of the total mode energy is carried in the evanescent
field in the cladding. Calculation of the total power in a mode is determined by
integration of the Poynting vector

1
(S,) = D Re(E X H) (5.60)
2

over the area of the waveguide. Substituting expressions for the electric and mag-
netic fields of the modes, the integrals can be evaluated. In the weakly guiding
approximation, the relative core and cladding powers can be shown to be [6]

2.2 2
Peore _ (1 _ K ) [1 ___ K ] 5.61)
Piotal V K, +1(ya)K, - 1(ya)
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Pclad =1 Pcore (562)
P total P total

where P, is the total power of the mode carried by the waveguide. A plot of the
fractional power carried in the core as a function of the V parameter for several
modes is plotted in Figure 5.14. The two integers labeling each line correspond to
the mode eigenvalue v€. As each mode approaches cutoff, the amount of power in
the cladding dramatically increases; the mode becomes less confined near cutoff.
Well above cutoff, most of the power is almost entirely contained in the core.
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Figure 5.14 A graph of the fractional power of a mode that is carried
in the core as a function of the fiber V number shows that, near cutoff,

- the fraction contained in the cladding increases dramatically. The modes
are labeled in LP notation.

5.11 SUMMARY

In this chapter, we developed the fundamental concepts of the circular dielectric
waveguide. Solution of the wave equation in cylindrical coordinates led to mode
solutions in the form of cylinder functions such as sin¢> and the Bessel functions
J(kr). As was found in planar waveguides, the propagation parameters B for the
modes were found from solution of a transcendental equation, and the values of B
were restricted to lie between kgn.,,. > B > kon..q. We developed explicit solu-
tions to the longitudinal electric fields of the modes, and, using Maxwell’s equa-
tions, we found expressions for all field components. The formal modes are
complicated in terms of their field structure, so a picture based on the weakly
guided mode approximation was developed which simplified both the characteristic
equation for finding B, and the physical description of modes as linear superposi-
tions which were linearly polarized.

We concluded the chapter with a number of short topics, such as the cutoff
conditions, the V parameter, the number of modes, and the power confinement of

the modes. One topic that was not discussed was dispersion, which is a very im-
portant topic for any long-distance optical waveguide system. We defer a complete
discussion on dispersion in circular fibers until the next chapter, where graded-
index fibers are described. The motivation for graded-index circular fibers, exactly
as in the case of graded-index planar waveguides, is to reduce modal dispersion.
Chapter 7 develops this important topic.
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