Chapter 16 Semiconductor Lasers

Quantum wells have extremely large gain compared to heterojunctions. From
the dimensions, it should be obvious that the confinement factor I is relatively
small in these lasers. A typical quantum well will be 50A in width, while a typical
mode might be 2um in width. The confinement factor is less than 1 percent for
such a system. This means that only a small fraction of the mode is experiencing
gain at any moment. The gain is very high to support the entire mode. However,
like the double heterojunction laser, the wings of the mode ideally do not experi-
ence any interband absorption, so losses are minimal.

16.11 MODULATION RATES IN SEMICONDUCTOR LASERS

One of the biggest applications of semiconductor lasers is in optical communica-
tion links. Of interest to the link designer is the maximum modulation speed of the
laser. For slow modulation, the output of a semiconductor laser is essentially linear
to the input current. If the current increases, so does the output intensity. As the
modulation speed increases, complications arise due to a slight time delay between
the creation of gain (injection) and the saturation of that gain by an optical field.
The time domain picture is needed to determine laser modulation frequency char-
acteristics. In this analysis, we will focus on the total inversion and the total num-
ber of photons in the cavity. We represent the total inversion by n, and the total
number of photons in a given mode by ®.

The total population is governed by three processes: injection, spontaneous re-
combination, and stimulated emission. If we consider a pn junction with a carrier
confinement region of depth d, the total inversion is described by the rate equation

d J
;’Z = q_d (Injection)
_z (Spontaneous Recombination) (16.60)
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where n,,,, is the threshold inversion, g is a collection of constants describing the
strength of the optical interaction, and 7; is the spontaneous recombination lifetime
of the carriers. (The formula for gain cross section, o = A,;A\%g(v)/87n?, that we
developed for gas and ion lasers does not apply to semiconductors.) Putting all the
rates together, we can write a general expression for the inversion in the
semiconductor.
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=+ L 0y = Nypom)® 16.61
dt qd Ts S(n nnom) ( 66 )

To solve this equation, we need an expression for the number of photons in the
cavity, ®. The photons are governed by their own equation. They increase in num-
ber primarily due to stimulated emission:
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dd
i +0o(n — n,,m)® Stimulated Emission (16.62)

There is also some increase in the photon count due to spontaneous emission into
the mode of interest. As with the systems we described in Chapter 15, spontaneous
emission couples to all the modes of the cavity, of which most are not the desired
TEMg, modes of the cavity. Nevertheless, with the very small dimensions of typi-
cal semiconductor cavities, the number of spontaneous photons which couple into
the TEMj, modes is not always insignificant. We can define a fraction 8 of the
spontaneous emission to couple into the mode:

dd N

— = pB— 16.63

dt BTs ( )
Finally, there is a loss of photons due to partial transmission at the mirrors. We
define a photon lifetime, 7,, which describes the average time a photon stays in the
cavity. The rate equation for photon loss is

dd ¢
—_—=—— 16.64
dt Ty ( )
Putting all these terms together,
do P
== 10,(1 — Ny ® + B — — (16.65)
dt T, T

Equations 16.61 and 16.65 are coupled differential equations which describe the
dynamics of the gain and intensity inside the laser cavity. We can solve them first
for steady state to get an expression for the output power. Assume that the junction
is pumped with a DC current density J = J,, with n = ng > n,,,,, and ® = @,
At steady state, d/dt = 0, so from the photon equation

®
0, (ng — Ny )® + B2 = — (16.66)

Ts Tp

If we solve this for o,(ny — n,,,)®P and plug this into the inversion equation, we
can solve for the number of photons

QZQ(JO_noqd) . Bnoty
qd 7 (16.67)
= K[JO - Jth] + Pspon

5

In the second equation, constants have been combined into single terms to simplify
the appearance of the expression. The stimulated power (the first term in the equa-
tions) is generally concentrated in one or a few modes. The spontaneous power is
not mode selective, but is in fact spread out over all the possible modes (on the
order of 10%) of the volume. A plot of the output power from a semiconductor
laser is shown in Figure 16.28.
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Figure 16.28 The output response
from a diode laser shows that,
below threshold, there is significant
spontaneous emission. Once
threshold is reached, stimulated
emission dominates the output.

Next, we can determine how the laser will respond to a small-signal modulation
of the drive current. We replace J, with J, + AJ(¢). Similarly, we will look for
variations in the photon count and inversion in terms of small-signal variations,
n = ng+ An(t) and ® = ®; + AD(z). Plug these values into the rate equations
to get

dt ~ dt  qd qd 1, 7 (16.68)
—0oy[ng — An(t) — nol][® + AD(1)]

dng + dAn(t) _Jo 4 AJ ny An(r)

1[19 + i—A—f—(—{—)- = o's[no — An(t) - l'l()] [q)o + Aq)(t)]

dt dt (16.69)
N B[no + An(t)] _ Py + AP
T T,

After doing a little algebra to expand terms, throwing out second-order terms such
as AP(t)AN(t), and canceling common terms, we end up with two coupled
equations

dAn(r) _AJ _ ( 1. asp()) An(t) — AP(1)

a  qd \7 U (16.70)
dAP

dt(t) = [USPO -+ 'ﬂ:] An

The classic method to solve these coupled equations is to convert them into one
second-order differential equation. The photon equation becomes
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2
‘—I—Ai:@ + [—1— + O'SPO] dAP() . [PO + E] AP(r)
dt s dt Tp S (1671)
_A B
= 7d I:O'SPO + Ts]

This is not very enlightening, but we can use it to determine the response to certain
driving functions. We assume the current has a harmonic driving term J(r) =
AJe’®". Let’s look for a solution to ® in terms of a similar harmonic function, ®(¢)
= Ade/“", Plugging this trial solution into the equation, we find it yields a solution
so long as we choose the ratio of the amplitudes to be

%%L 1 PO“j/Ts - (16.72)
[;;(O'spo +B/1) —w ] +jw [75 + ‘TsPo]

This equation takes a little inspection to appreciate. The denominator has a
resonance term in it. For very low frequencies, the constants in the equation dom-
inate, yielding a constant modulation index. But at very large frequencies, the w?
term in the denominator dominates, causing the modulation to roll off rapidly with
frequency above a critical value. The critical frequency for modulation is when the
denominator is minimized, or when

1 P
w? = —(osPo + E) ~ 270 (16.73)
p s p

A plot of the transfer function is shown in Figure 16.29.

N\

Low Current — +— High Current

Modulation, A®

>
Frequency, ®

Figure 16.29 The modulation of the output power by current
modulation is a fairly flat function at low frequency, but shows a
resonance at higher frequencies. The resonant frequency depends
on the current and photon lifetime.

We see from Equation 16.73 that the maximum modulation frequency can be
increased by operating the laser at higher power. This increases the saturating
fields, so the optical output is more responsive to changes in the gain. One can also
decrease the photon lifetime of the laser. This can be done by reducing the length
of the laser, or by reducing the reflectivity of the laser mirrors. However, the
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maximum frequency only increases as the square root of changes in power of pho-
ton lifetime, so it is not easy to make dramatic strides in the frequency response.
Current laboratory records indicate that modulation speeds up to 30GHz are feasi-
ble, although commercial devices are still operating in the 5-10GHz range. At
these frequencies, packaging issues such as lead inductance, junction capacitance,
and series resistance become as serious as the fundamental laser physics.

16.12 SUMMARY

In this chapter, we have made a cursory review of semiconductor laser technology,
starting with the fundamental equations that govern the carrier distributions in
semiconductors, and applying these laws to semiconductor laser design.

The field of semiconductor lasers is large and dynamic. We have done little
justice to the scope of the field, nor to the excitement that it currently is experienc-
ing as it pushes open new applications and frontiers. The interested reader is en-
couraged to follow through by reading some of the suggested readings at the end
of this chapter to find more complete descriptions of the semiconductor laser.
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