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axis, the index of refraction is called the extraordinary index. The permittivity tensor for
calcite is

275 0 0
e=e| 0 275 0 (1.11)
0 0 221

Calcite is called a negative uniaxial crystal because the extraordinary index is less than the
ordinary index. We will deal with crystal optics in later chapters, especially when dealing
with electrooptic modulators. For a good review of crystal optics, see Chapter 4 of Yariv
and Yeh [7].

In an isotropic medium, the permittivity is independent of orientation and is de-
scribed accurately by the scalar relation D = eE. But beware! Isotropic does not
necessarily mean homogeneous. The permittivity can be a function of position,
€(r). In an inhomogeneous medium, the electric field will encounter a different
permittivity, €, depending upon spatial location in the material. A graded-index
waveguide, discussed in Chapters 5 and 7, is a good example of an inhomogeneous
medium.

For most optical dielectric materials, u is effectively uo,. We can ignore mag-
netic effects except when dealing with special magnetic optical materials, such as
yttrium iron garnet (YIG), used as an optical isolator between waveguides and
sources. Unless otherwise stated, it is safe to assume that the permeability, w, is
that of free space, uy. We will discuss the frequency dependence of u and € in
Chapter 4.

1.4 THE WAVE EQUATION

The electromagnetic wave equation comes directly from Maxwell’s equations. Der-
ivation is straightforward if we assume conditions that are reasonable for optical
wave propagation. These conditions are that we are operating in a source free
(p =0,J = 0), linear (e and u are independent of E and H), and isotropic
medium. Equations 1.1-1.4 become

oB
VXE=-—— (1.12)
ot

oD _
VXH=— ,

H=— (1.13)

VD=0 (1.14)

V-B=0 (1.15)

These simple-looking equations completely describe the electromagnetic field in
time and position. Are the assumptions reasonable? Sure. At high frequencies (e.g.,
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v > 1013 Hz), free charge and current are generally not the source of electromag-
netic energy. The typical sources of optical energy are electric or magnetic dipoles
formed by atoms and molecules undergoing transitions. Maxwell’s equations ac-
count for these sources through the bulk permeability and permittivity constants.

Equations 1.12-1.15 are strongly coupled first-order differential equations. To
decouple the two curl equations, we follow the usual technique of creating a single
second-order differential equation. First take the curl of both sides of Equation
1.12

VX (VXE) =VX -8 _yx %
o ot

(1.16)
Assuming that u(r, 7) is independent of time and position, Equation 1.16 becomes

oH
VXVXE= _“(Vx_a—t—) 1.17)

Since the functions are continuous, the order of the curl and time derivative oper-
ators can be reversed:

VXVXE-= —ua%(VxH) (1.18)

Substituting V X H = 0D/dt into Equation 1.17 and assuming e is time invariant
d{oD

VXVXE=—pu—|—

or\ ot

&°E

— e
Y

Now we have a second-order differential equation with only one variable, E. The

(V X 'V X) operator is usually simplified using a vector identity

VXVXE=VV-E) - VE (1.20)

(1.19)

The V2 operator should not be confused with the scalar Laplacian operator. The
V2 operator in Equation 1.18 is the vector Laplacian operator that acts on a vector,
in this case E. For a rectangular coordinate system, the vector Laplacian can be
written in terms of the scalar Laplacian as

VE = V’E,% + V’E,§ + V?E,2 (1.21)

where £, §, and 2 represent unit vectors along the three axes. The V?’s on the right-
hand side of Equation 1.21 are scalar, given by
# PP
V2=—2+—v2+'—2' (1.22)
ax“  dy" 9z
in cartesian coordinates. Solution of the vector wave equation requires that we first
break the equation into the orthogonal vector components, which is sometimes
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difficult but always possible, and then combine the individual vector field solutions
together.

What about the term, V - E? It is not necessarily equal to zero, as is often
assumed. We know only that V - D = 0. Simple calculus leads to an expression for

V-E:
V-D=90
=V-eE (1.23)
=Ve:E+ eV-E
Solve for V - E:
V-E= —E-Z: (1.24)

Plugging this value into the linear wave equation for electromagnetic waves yields:

2

VZE - Meﬂ = —V(E-E) (1.25)

or €

The right-hand side deserves special consideration. It is non-zero when there is a
gradient in the permittivity of the medium. Such gradients are not uncommon in
guided-wave optics. With the exception of step-index waveguides, most guided-
wave structures use a graded permittivity. So how do we deal with this extra term?
Well, we ignore it! For most structures, the term is negligibly small. (Problem 1.2
explores the limits of Ve/e, showing that it is almost always negligible.) Neglecting
this term, the wave equation reduces to its homogeneous form:

VE — ue— =0 (1.26)

Had we started with Equation 1.13 instead of Equation 1.12, we could have derived
a similar wave equation in terms of the magnetic field amplitude (see Problem
1.10),
) °H
VH—,LL€?=O (1.27)

1.5 SOLUTIONS TO THE WAVE EQUATION

Consider the units of each term in Equations 1.26 and 1.27. The V? term has units
of 1/(distance)®. The second-order time derivative clearly has units of 1/(sec)?. In
order to make physical sense, the units of e must be (sec/m)%. We will show, in a
later section, that V' 1/eu is the phase velocity of light in a medium. Notice that
the speed of propagation is determined by the material parameters. In free space,
V1/pge, = 2.998 X 108m/sec, or c, the speed of light in vacuum. (The speed of
light is now defined to be exactly 299,792,458 m/sec. The meter is defined in terms
of the speed of light, being the distance light travels in 1/299,792,458 sec. This
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definition reflects the effort to define all fundamental constants in terms of the
second.) We will discuss the speed of propagation more thoroughly in the next
section.

Equations 1.26 and 1.27 are vector equations. They can be simplified by re-
writing them in terms of the components of the field. In rectangular coordinates,
the vector Laplacian breaks into three uncoupled components. The scalar compo-
nent equations become:

V2E, — pe—r =0 (1.28)

Here the subscript indicates the i component, where i stands for x, y, or z, and
V2 is the scalar Laplacian given in Equation 1.22. Since the symbol for the vector
and scalar Laplacian look the same, we rely on context to distinguish the operators.

The choice of coordinate system is critical to solving the wave equation. For
example, choosing rectangular coordinates to describe a wave in a cylinder leads
to component coupling upon reflection at the cylindrical surface. The cartesian
components are inseparable in such a system. When a coordinate system can be
found with no coupling between the orthogonal components, the individual equa-
tions can be solved independently. In such a case, we refer to the individual equa-
tions as the scalar wave equations. In cartesian coordinates, the scalar wave
equation is written as:

62
V2 — “65%2// =0 (1.29)

where ¢ stands for any one of the orthogonal amplitude components. To find a
valid solution, we use the separation of variables technique to get:

Ur, 1) = Pr)d() (1.30)
= Yy exp(jK * r) exp(jwt) + c.c.

The term ¢ is the amplitude; the separation constant k is called the wavevector
(in units of rads/meter); and w is the angular frequency of the wave (in units of
rads/sec). We will use the wavevector as the primary variable in most waveguide
calculations. The magnitude of the wavevector is defined in terms of the angular
frequency and the phase velocity:

Ikl=wVue=k (1.31)

The wavevector K points in the direction of travel for the plane wave. The magni-
tude of Ik!| describes how much phase accumulates as a plane wave travels a unit
distance. Think of k as a spatial frequency.

Through proper choice of sign for each term, one can describe a wave that
travels in the forward or backward direction along the axis of propagation. Figure
1.3 shows the two cases.
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FANANYANANER
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e (ot + jk2) e (jot - jkz)

Figure 1.3 The general solution to the wave equation in a linear
homogeneous medium leads to plane waves. Depending on the relative
sign, the wave will travel left or right.

In optics, it is common to describe optical fields by their wavelength. Consider
the wave in Figure 1.4,

]

AVAAVAl

Figure 1.4 The basic description of the wavelength is that the
wave accumulates 27 of phase after traveling one wavelength.

Amplitude

The waveform in Figure 1.4 shows the real part of the spatial component of the
plane wave, ¥(r) = ype’*". The distance between two adjacent peaks in amplitude
is called a wavelength, A. The amplitude of the wave at the first peak, e*t s the
same as the amplitude at the peak located one wavelength away, e/*1*%,

jkry — _jk(ri+A
e] " = e] ( 1 ) (1-32)
= ejkrlejk’\

This equality holds only if e/** = 1, which requires that kA = 2. Solving for &:
k=2m/A (1.33)

This is the expression for wavevector k in terms of wavelength, A.

Example 1.2 Magnitude of the Wavevector for Visible Light

Consider a plane wave of light with A = 1um. The light is directed in the x—y plane at 45°.
Describe the magnitude and direction of the k vector.
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Solution:

The magnitude of k is:

2w
10~% cm

= 62,831 rads/cm

(1.34)

Note the units: radians per centimeter. The direction is easily described with trigonometry.
The k vector can be broken down into its components in the chosen coordinate system,

kK = k(£ cos 45° + § sin 45°)
=k 0.707(% + %) (1.35)
=44,421(% + §) rads/cm

21

1.6 TRANSVERSE ELECTROMAGNETIC WAVES AND THE
POYNTING VECTOR

Assume that a plane wave is propagating along the Z direction and that the electric
field is polarized along the £ axis, E(r, t) = £E, cos(wt — kz). In complex notation,
this would be described as

1 it .
E(r, t) =3%E _(e—j(kz—a)t) + e+1(kz—w,))
"2 (1.36)

=% %e‘f(kz_‘"’) + c.c

We use complex notation because derivative and integral operations do not change
the functional form. We must be careful to take the real part of expressions like
Equation 1.36 when we want to describe a physical wave.

The magnitude of the magnetic amplitude can be derived from the electric am-
plitude using Maxwell’s equations. Plug the electric amplitude (Equation 1.36) into
Equation 1.1, and use Equations 1.7 and 1.30 to show:

k Ey .. .
H(, 0 = )?———Oe_’kzef‘”’ + c.c
Ho 2

oV ue E,
—_—

MW

— A

=5 “ikzglt + ¢, (1.37)

~

-l—@e_jkzej @+ ococ.
n 2

where 7 is called the characteristic impedance of the medium,
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":V@ (1.38)
€

In vacuum, the characteristic impedance is 1y = 377€). Thus we see the magni-
tude of the magnetic amplitude is directly proportional to the magnitude of the
electric amplitude. Note that E is perpendicular to H.

A useful concept for characterizing electromagnetic waves is the measure of
power flowing through a surface. This quantity is called the Poynting vector, de-
fined as

S=EXH (1.39)

S represents the instantaneous intensity (W/m?) of the wave. The Poynting vector
points in the direction of power flow, which is perpendicular to both the E and H
fields. The time average intensity for a harmonic field (i.e., sinusoidal waveform)
is often given using phasor notation

S)= %Re[E X H*] (1.40)

where Re is the real part, and H* is the complex conjugate of H. The total electro-
magnetic power moving into a volume is determined by a surface integral of the
Poynting vector over the entire area of the volume. Often we are only interested in
the average energy flow in one direction, e.g., the power crossing a dielectric in-
terface. In such cases, the dot product of the Poynting vector with the unit direction
vector must be evaluated, e.g.:

(@=%&EXH*8 (1.41)

This value of (S,) is valid at only one point in space. To calculate the total power
flow in a waveguide of finite extent, where the values of E and H vary in position,
it is necessary to integrate the Poynting vector over the cross section of the guide.

1.7 PHASE VELOCITY

Two characteristic velocities describe the propagation of electromagnetic waves.
These are the phase velocity and the group velocity. We will consider phase veloc-
ity first. Consider the sinusoidal electromagnetic wave plotted in Figure 1.5, trav-
eling in the Z direction. A point is attached to the top of one of the amplitude crests,
as shown in Figure 1.5. How fast must this point move to stay on the crest of the
wave? Since this crest represents a specific phase of the wave, the point must move
at a speed such that:

e /=9 = congtant (1.42)

which is satisfied if kz — wt = constant. It is easy to see z(¢) must satisfy:

wt
z2(H = n + constant (1.43)
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z(t)

Amplitude
~Y

Figure 1.5 The phase velocity is determined by the speed
necessary for a point to ride the crest of a wave.

We can differentiate z(¢) with respect to time to find the phase velocity, v(z):

dz
x = I =V (1.44)
The phase velocity relates the angular frequency to the magnitude of the wave-

vector. Also, recall from Equation 1.31 that w = k/V ue, so:
v, = 1/V e (1.45)

This is the same velocity that we derived in Equation 1.36, so the speed of light
that comes out of the wave equation is the phase velocity. If permittivity € > ¢,
then v, is less than c, the speed of light in a vacuum. Except for unusual circum-
stances, such as propagation in plasmas, most materials have a permittivity, €, that
is greater in magnitude than €;. Do not be concerned if the phase velocity exceeds
¢ in certain situations. Such instances are results of collective action by an oscillat-
ing medium.

We define the index of refraction, n, of a medium as the ratio of the phase
velocity of light in a vacuum to the velocity in the medium. Using Equation 1.45:

c
n=-— (1.46)
Yp
or, in terms of the material properties of the medium
V e
n et
v Koo (1.47)

when pu = ug

The index of refraction is an important parameter in optical design and material
characterization. We will explore its dependence on wavelength in later chapters.
The ratio €/€; is called the dielectric constant. The index of refraction, n, is the
square root of the dielectric constant.

We often write the wavevector k in terms of the vacuum wavevector, ky, and the
index of refraction. The vacuum wavevector is the magnitude of the wavevector in
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a vacuum, and is given by k = 2@/A. Using the relation k = wV uge, we can
rewrite this as

k=w\/,u,0€=w\/poeo\/§=w\/yoeon=kon (1.48)

Once we know the vacuum wavevector, we can define the magnitude of the wave-
vector in all media based on the index of refraction.

To summarize, the angular frequency, w, of a plane wave is identical in all
media. This follows from conservation of energy, where Planck’s relation, E = fw,
describes the energy in the wave. The wavelength of the plane wave is modified by
the local index of refraction to be A = A¢/n, where A is the vacuum wavelength
of the plane wave. The k vector scales as k = kyn in a medium with dielectric
constant n.

1.8 GROUP VELOCITY

Except in regions of high attenuation, energy in an electromagnetic wave travels at
the group velocity, v,. Information which is carried by modulation on a light wave
is also carried at the group velocity. The group velocity describes the speed of
propagation of a pulse of light. A simple construction allows us to develop an
expression for the group velocity through a superposition of two waves with dif-
ferent frequencies. With the frequencies assigned,

0w = 0+ Ao, w = w— Ao, (1.49)
the two associated wavevectors will have values

ky=k+ Ak,  ky=k— Ak (1.50)

Assuming the waves have equal amplitudes, E, the superposition can be described
as:

E, + E, = Ey(cos [(w + Aw)t — (k + Ak)z)

(1.51)
+ cos [(w — Aw)t — (k — Ak)zZ])
Using the trigonometric identity
2cosxcosy =cos (x +y) + cos(x — y) (1.52)
the electric field superposition can be rewritten as
E| + E, = 2Ey cos (wt — kz) cos (Awt — Akz) (1.53)

This superposition of two waves at different frequencies leads to a temporal beat
at frequency Aw and a spatial beat with period Ak. Figure 1.6 shows the super-
position of the two waves. The envelope of the amplitude clearly depicts the beat
frequency.
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VV UV’
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Figure 1.6 Two waves of different frequency will form a beat pattern.
The envelope of the beat travels at the group velocity.

Amplitude

q

The group velocity is the speed at which a pulse, or in this case, the envelope,
travels. The envelope is described by the cos (Awt — Akz) term of Equation 1.53.
We can again attach a point to the crest of the envelope, and ask what speed, w(¢),
is required to stay on the crest of the envelope. Following the arguments used to
derive the phase velocity, we set the phase argument Awt — Akz = constant. Solv-
ing for z(¥),

@) = Aot + tant (1.54
Z Ak consta .54)
The group velocity is the derivative of this:
dz Aw . Ao dw
Vg = o = X becomes Al:)r_)no Ak = T = Vg (1.55)

The group velocity, v,, depends on the first derivative of the angular frequency
with respect to the wavevector. In free space, where w = kc, the relation is simple

d
and leads to E(;f = ¢. In a vacuum, the phase and group velocities are identical.

The relation is more complicated in other media. The constitutive constants, es-
pecially €, usually depend on frequency. Recall that k = wn/c. Then:

_do_[a]" _[dfen\]" _[n, @]
Ye T i do|  |do\ c ¢ cdo (1.56)

_/\_
ST

The last relation can be confirmed with a simple calculation. The group velocity is
nearly equal to the phase velocity, but is reduced or increased by a small term
proportional to the change of index of refraction with wavelength. This change in
index is called dispersion. In regions of regular dispersion, dn/dk > 0, the group
velocity is less than the phase velocity, ¢/n. Optical materials display regular
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dispersion throughout their transparent regions, so energy travels slower than the
phase. Dispersive properties are described in more detail in Chapter 4.

1.9 BOUNDARY CONDITIONS FOR DIELECTRIC INTERFACES:
REFLECTION AND REFRACTION

When two different media are adjacent to one another, the wave solutions in the
two regions must be connected at the interface. The rules for connecting solutions
are called boundary conditions. In general, if there is an index difference between
two media, there will be a reflection. This is called a Fresnel reflection, after the
French scientist, A. J. Fresnel (1788-1827).

Consider the interface shown in Figure 1.7. The k vector of an electromagnetic
wave propagates from one medium into another (accompanied by a partial reflec-
tion back into the originating media). The wave has frequency w, and is incident
on the interface from region 1 at an angle of incidence, 6;. The two regions have
indices of refraction n; and n,, respectively. We want to determine the amplitudes
of the transmitted and reflected waves, E, and E,, and their respective wavevectors,
k, and K, .

kr
Hr
nqy | No
Er El ky
o,
-
0; 0 H, z
k;
E,- '
H; y

Figure 1.7 A ray incident on an interface at angle
6; will reflect and refract into two different rays. The
electric field in this figure is directed out of the page
for all waves.

We must first solve the wave equation (Equation 1.26) in each region. It is
straightforward to write down general solutions to the wave equation on either side
of the interface,

Efr,t) = Eje /& r-od (1.57)

where E; is the amplitude. The subscript, I, refers to the three different fields that
will arise. The tough part of the problem is connecting these solutions at the inter-
face. The boundary conditions that apply to this situation can be derived from the
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integral form of Maxwell’s equations. For review, in a medium where there are no
sources, (p, J = 0), the boundary conditions are:

§XE,—E)=0 tangential components of E are continuous;  (1.58)
§XMH,—H)=0 tangential components of H are continuous; (1.59)
§*B,—B)=0 normal component of B is continuous; (1.60)
§*M;—Dy=0 normal component of D is continuous. (1.61)

Where § refers to the unit normal to the interface.

There are two possible orientations for the electric field with respect to the
interface. The field can be perpendicular or parallel to the plane of incidence. The
plane of incidence contains both the k vector and §. When the electric field is
perpendicular to the plane of incidence, it is called a transverse electric (TE) wave.
Figure 1.7 shows the specific case of a TE wave incident on an interface at an
angle 6;.

Inspection of Figure 1.7 shows there are six field amplitudes (E;, E,, E,, H;, H,,
H,), three wavevectors (k;, k,, k,), and three angles (6;, 6;, and 6,). Some of these,
like E; and 6,, are initial conditions of the problem, while the others are dependent
variables. It is convenient to first relate the angle of incidence to the angle of
reflection:

0; = 6, (1.62)
Justification is straightforward: We can apply Fermat’s principle (Problem 1.4), or
conservation of photon momentum (Problem 1.5).
The general description of the £-polarized incident electric field is:
E; = Efe ¥ Teiot (1.63)
The wavevector k; is described in terms of its vector components,

k; = (£ cos 6; — ¥ sin 0)kon, (1.64)

where k; is the vacuum wavevector, defined as k°= w/c. Position r is also described
in vector form:

r=xt+y+2 (1.65)

Substituting these terms into Equation 1.63, the complete description of the inci-
dent field is

— 2 —jkon(2 i—9 sin 6;) * (x£ 2 J
Ei(x, ¥, 2, t) — ine -Jkon (£ cos 6;—9 sin 6;) - ( +yy+zz)e]wt (166)

— X_ine—Jkonl(z cos 6i—y sin 0i)ejwt

The incident field is completely defined in terms of direction, frequency, and po-
larization. The frequency term, ¢, can be dropped from the explicit formulation
because it is the same in all regions. The other electric fields in Figure 1.7 are
similarly described.
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E(x,y,2) = £Ee X 'T (1.67)
— .fEte_jkOn2(z cos 6;—y sin 6y)
E(x,y,7) = fE,e %r'F (1.68)

= fE e—jkonl(—z cos Or—y sin 6y)
’

We have assumed that the electric field will continue to point out of the page for
each component. This may or may not be true: in some cases the phase of the field
advances by 180°, and the direction would reverse. If this happens, when we have
completed our solution, one of the components will be multiplied by a negative
sign. This means that we did not pick the correct orientation initially. But it has no
consequence so long as we consistently apply the boundary conditions and geo-
metric projections in our solution. So do not be too concerned about choosing the
proper orientations initially, as these problems will solve themselves.

We will need to describe the magnetic fields for the three waves. The appropri-
ate k vector for each magnetic field is the same as for the electric field. Note that
for TE waves, the H fields have two vector components, a z component and a y
component. The magnitude of the magnetic field is related to the electric field
through the impedance, 7, of the medium (Equation 1.37).

IH| = |El/n (1.69)

where 1; = V u/e;. Using trigonometry, the correct expression for the H field com-
ponents are

H; = (E;/m;)(¢ sin 6; + § cos ;e Imko(zcos bi=ysin &) (1.70)
H, = (E,/ny)(Z sin 6, + § cos e /n2ko(zcos 6=y sin b) 1.71)
H, = (E,/n))(¢ sin 0, — § cos 6,)e /Mko(=zcos b=y sin ) 1.72)

With a complete description of the field in all regions (Equations 1.68-1.72), we
can connect the solutions at the interface, yielding formulae for transmission and
reflection. First, apply the condition that the tangential component of E must be
continuous across the interface:

EX(E;+E)=2XE/],o (1.73)

The tangential E field at the interface is the E, component. Expanding this at z = 0,
and using the fact that Z X £ = y and 6; = 6,, yields:

y\EieokOnly sin 6;) 4. yAEre(jkonly sin 6) _ yAEte(jkOn»z sin 6r) (1.74)
Combining terms of equal phase:
WE; + Er)e(iko’hy sin 6) — }”,Ete(ikoﬂz)’ sin 6;) (1.75)

For this equation to hold, it must be true for all values of y. At y = 0, the equation
becomes simply:

E,+E . =E, (C(;ntinuity of magnitude) (1.76)

Substituting this into Equation 1.75 and canceling common terms yields:
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eUkomy sin 6) — (konay sin 6) .77
which can only be true if:
konyy sin 6; = kgn,y sin 6, (1.78)
Canceling common terms on both sides we arrive at Snell’s Law:
n; sin 6; = n, sin 6, 1.79)

Application of the first boundary condition provides the direction of the transmit-
ted wave. This leaves only the amplitudes, E,, E,, H,, and H, to be determined. To
determine the amplitude of E, in terms of E; we resort to the magnetic boundary
conditions. The continuity of tangential H requires that:

£X (H; + H,) =2 X H,|,— (1.80)

In this case, H; has both z and y components, so we must be careful to carry
only the y component through the cross product. Using Equations 1.70-1.72,
ZXy=—%and 6, = 6;

—XE;cos 6;

X H,= n—e—fko"ﬂ‘y sin 6) (1.81)
1
iXH, = @e—ﬂ% n(—y sin 6) (1.82)
2
+XE 0, _. g
XH, = %e—ﬂmm(—y sin 6;) (1.83)
1

where E;, E,, and E, represent magnitudes, not vectors. Adding the terms according
to Equation 1.80, and applying Snell’s law (Equation 1.79), we get

(E; — E)) cos 6;/my = E,cos 6,/n, (1.84)
Since E; = E; + E,, we can replace E, in terms of the other variables
(E; — E,) cos 0;/m = (E; + E,) cos 6,/n, (1.85)
and solve for the ratio of E, /E;:

E, _(mpcos 6; — my cos 6)
E; (mpcos 6; + m; cos 6,)

(1.86)

Similarly, we could eliminate E, from Equation 1.85 and solve for the ratio E,/E;:

E, _ 21, cos 6;
E; (mpcos 6; + m cos 6,)

(1.87)

It is more common to deal with the index of refraction, n;, than with impedance,
7;, for a material (be careful to distinguish 7 from n). If w = u,, then 1 can be
rewritten as:
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€; €;€p n;

1

Substituting this expression into Equations 1.86 and 1.87 generates the more fa-
miliar forms of the amplitude transmission and reflection formulae for a transverse
electric field. In these formulae, the field is incident from the n, side, entering into
the n, side.

E, _(n;cos 6 — n,cos 6) (1.89)
Ei (n1 coS 0,' + hny COS 0,) ’
E, _ 2n, cos 6; (1.90)

E; B (ny cos 6; + nycos 6)

The expressions for transmission and reflection of a wave which has the mag-
netic field H perpendicular to the plane of incidence (the so-called transverse mag-
netic or TM wave) are significantly different. Their derivation is left as an exercise
to show:

E, nycos 6, — n,cos 6 E, 2cos 6; -

E; nycos6,+nycos6;, E; (ny/n))cos6;+ cos 6, (191
One word of caution about the Fresnel formulae: they describe the amplitude of
the transmitted and reflected field, not the power of the fields. One must be careful
since, in some circumstances, the magnitude of the transmitted electric field can
be larger than that of the incident electric field. This dilemma is resolved when
total power is accounted for in the solution. In such cases, one can either rigor-
ously solve for the z component of the Poynting vector for the transmitted and
incident waves, or account for the geometric change of area between the incident
and transmitted beams. Problem 1.8 explores the power issues of these formulae.
We could also develop expressions for the H components, but these can be found
simply and directly through the impedance relationships.

Example 1.3 Normal Reflection from a Glass Interface

The simplest example of Fresnel reflection is that which occurs when light strikes a glass-
air interface. We experience this effect on a daily basis. Let’s apply the reflection formula
to this problem to illustrate the magnitude of the effect, and the phase shift which occurs.
A beam of light is incident normally on a glass-air interface as shown in Figure 1.8..
What is the intensity of the reflected light if the glass has an index of refraction of n = 1.5?

Solution:

Plugging numbers into Equation 1.90, noting that cos® = 1 in this case, we get

1-15
1+ 1.5

E,/E; = -0.2 (1.92)
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n=1| n=15
Reflected
Light ¢——

Incident Light

Figure 1.8 A beam of light strikes a glass
interface normally, causing a small reflection.

The reflected amplitude is 20 percent of the incident amplitude. The negative sign indicates
that the reflected wave is 180° out of phase with the incident wave. In general, when light
strikes a surface with a higher index, the phase of the reflected wave will be reversed. Now,
what is the intensity? Using the Poynting vector and the fact that |H! = |El/7n, we find the
incident intensity is:

1 E3
Sine = = —2 (1.93)
27
while the reﬂecteq intensity is only:
1 (0.2E,)*
Sref = 5(___£)_ = O'O4Sinc (194)
n

Thus, only 4 percent of the incident power is reflected by the glass interface. This reflection
can become a significant loss in certain applications. For example, a camera lens often will
consist of three or more separate lenses, representing six glass-air interfaces. The total
transmission for such a system would be 7 = (0.96)° = 0.78 if the lenses are not modified.
This represents a significant loss of power in an application where light collection effi-
ciency is critical. Not only would the reflections require larger apertures and longer expo-
sure times, but they also could contribute to ghost images on the film. These problems are
overcome by putting an anti-reflection (AR) coating on each surface. The AR coating is
basically a stack of A/4-thick layers of dielectric material which interferometrically reduce
the total reflection coefficient.
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1.10 TOTAL INTERNAL REFLECTION

An important physical process in guided wave optics is total internal reflection.
We will look at total internal reflection from two perspectives: ray tracing and the
wave equation. Ray tracing is useful when the dimensions of the optical element
are large compared to the wavelength of light. Ray tracing is useful for concepts
such as the numerical aperture. The wave picture provides a complete description
of the phase shifts and evanescent fields that accompany total internal reflection.
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1.10.1 Ray Tracing

Ray tracing views light as rays traveling in straight lines between optical elements.
The only action of an optical element is to redirect the ray. The angle of incidence
of the ray and the properties of the optical element establish the degree to which
the ray is redirected.

The important operatiopal rules for ray tracing are Snell’s law

ny sin 6, = n, sin 6, (1.95)
and the Law of Reflection
oincidence = oexi (196)

illustrated in Figure 1.9. Using these two simple equations, a powerful calculus can
be developed for designing and evaluating lenses and optical systems. Many excel-
lent references [8-10] elaborate on the application of ray tracing to optical design.
Powerful matrix techniques have been developed based on these simple laws which
allow the engineer to design linear optical systems. The ray tracing analysis is
usually of limited use for guided wave optical design, however. Its most common
application is to describe graded index waveguides, and to define the numerical
aperture.

m o

QN
. | YV

s

Refraction (Snell's Law) Equal Angle Reflection

Figure 1.9 There are two principle laws of ray tracing. The left figure shows
Snell’s law. The right figure illustrates that the angle of incidence equals the
angle of reflection.

1.10.2 Total Internal Reflection Using Ray Tracing

Total internal reflection (TIR) is the phenomenon where light is completely re-
flected at a dielectric interface without the help of reflective coatings. TIR is often
exploited to make efficient achromatic reflectors. For example, right-angle prisms
are often used to redirect light from imaging systems such as binoculars, or to
serve as rugged mirrors for high-powered lasers. The application that interests us
is in optical waveguides. Figure 1.10 illustrates the ray picture of a right-angle
prism and of a waveguide. The key requirement for TIR is that the light must be
incident on a dielectric interface from the high-index side. Thus an optical wave-
guide must consist of a layer of high-index dielectric surrounded by material with
a lower index.
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N

Figure 1.10 Total internal reflection can be implemented in many ways. The right-
angle prism and the optical waveguide both use total internal reflection to redirect or
trap light, respectively. Note that the light is incident from the high-index side of the
interface in all cases of TIR.

Total internal reflection occurs over a certain range of angles. Figure 1.11 shows
a wave incident at an angle, 6;, on a dielectric interface from the high-index side.
The refracted ray in the low-index medium, n,, exits at angle 6,. The exit angle is:

6, = sin—l(l'l sin 0i> C 197
n

As the angle of incidence, 6y, increases, the angle of refraction, 6,, must also in-

crease to satisfy the equality. But because n;/n, > 1, the refraction angle, 6,, will

reach a value of 90° before 6; does. This occurs when

sin 6; = =2 (1.98)
n

This value of 8, is known as the critical angle. For angles of incidence larger than
the critical angle, #, must be a complex number to satisfy Snell’s law. A complex
angle in the expressions for transmission (for example, Equation 1.90) leads di-
rectly to complex amplitudes in the low-index region. Complex amplitudes simply
means that a phase shift occurs. As with all simple reflections, the angle of reflec-
tion is equal to the angle of incidence of the ray.

m n
A
04
04< Critical Angle 04 = Critical Angle 64> Critical Angle

Figure 1.11 Three examples show where the angle of incidence is below, at, and
above the critical angle respectively.

Total internal reflection is the key to optical waveguiding. Consider the dielec-
tric structure shown in Figure 1.12. A dielectric slab of index n, is surrounded by
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a lower-index dielectric. A ray traveling within the high-index material will be to-
tal-internal-reflected at the upper and lower interfaces of this structure if the angle
of incidence at the interface exceeds the critical angle. This is a simplified picture,
as the actual ray picture of a waveguide is more subtle in terms of allowed direc-
tions for the rays. (This will be fully developed in the next chapter.) However, the
essential idea behind the optical waveguide is that light is trapped in a high-index
media through total internal reflection.

Total Internal Reflection

/ s

no

Figure 1.12 A waveguide can be
formed when total internal reflection
traps a wave between two surfaces.

Example 1.4 An Optical Switch

Consider the interface between a nonlinear dielectric of high index and a linear dielectric
of lower index. The nonlinear media has an index which depends on the intensity of the
electromagnetic field. This is called the optical Kerr effect. The Kerr effect modifies the
index of refraction in the following way:

n(l) =ng+ ny- I (1.99)

where n, is a small constant. For this example, let’s assume that n, = 107'° cm*W., (This
is unusually large. Ordinary glass has an n, about 6 orders of magnitude smaller than this.)

Figure 1.13 The nonlinear optical
switch consists of a wave incident from
the high-index side of an interface
between a nonlinear medium and a
linear medium.
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a. Assume that nyg, = 1.5 for low intensities, and ny,, = 1 beyond the interface. For
very low intensities (i.e., neglect the nonlinear portion of ny,e,), what is the critical
angle, 6, for a ray incident from n,g, to ny,,,?

b. 1If the angle of incidence is 0.5° smaller than the low-intensity value for 6,, the wave

“will have a finite transmission into the lower index media for low intensities. What is
the power of the transmitted field?

c. If the angle of incidence is 0.5° smaller than the low-intensity value for 6,, at what
intensity will the interface cease to transmit light?

Solution:

a. The critical angle is given by sinf,. = ny,,, /ny;gh, or

1
6. =sin"!{ — ) =4181° (1.100)
1.5

b. If 0 is set to be 41.31° the ray will be partially transmitted at low intensity because
this angle is below the critical angle. The amplitude of the transmitted field, E,, is
given by Equation 1.89. The refracted angle, 6,, is needed to evaluate the transmitted
term. From Snell’s law, 8, = 81.97°, and it follows that

2ny,;., cOs 6
Et /E; — high 1
(Mpigh COS Oy + ny,, COS 6,) (1.101)
2+1.5+cos 41.31
= S s = 1.778
1.5+ cos 41.31° + cos 81.97
Using this result with Equations 1.41 and 1.69, the power of the transmitted beam
(recall that m; = ng/ny, 12 = no/n,) is given by
nE?
S,==-Lt-2
270 (1.102)
1.778E)?
_ (LTT8E), cos 81.97° = 0.00059 E?
2-377
The incident power is
S = PhighEr s
Z
2mo (1.103)
1.5E?
= + cos 41.31° = 0.001494 E?
2-377 !
Dividing Equation 1.102 by the resuit of Equation 1.103, we see that approximately 39
percent of the power is transmitted through the interface.
c¢. To convert to total internal reflection, the index, g, must increase to

1

Snal31° (1.104)

Npign(D) =

The critical index will be reached when ny;g, (I) = 1.5148. The necessary intensity is
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Mg = 1.5 + 107197 = 1.5148 (1.105)

Solve for I to get I = 1.48 X 108 W/cm?,

Is this a practical switch? No. First, we have chosen an unrealistically large value for
the nonlinear index term. Second, the amount of light actually transmitted in the “on”
state is a small fraction of the incident light. A practical switch for systems application
would require a more efficient transmission factor.

1.11 WAVE DESCRIPTION OF TOTAL INTERNAL REFLECTION

We claim that the ray became totally reflected for angles beyond the critical angle,
yet the only evidence we offered to support this claim is that the trigonometric
identity is impossible to rationalize using real angles. We can put the description
on a more physical basis by examining total internal reflection using electromag-
netic waves. The wave picture provides a physical explanation of the reflection,
and yields information on the phase shift caused by reflection.

Consider a TE plane wave, polarized along the £-axis with amplitude E; inci-
dent on a dielectric interface, as shown in Figure 1.14. The angle of incidence is
less than 6. Only the spatial descriptions of the two waves are considered, since
the time behavior is identical for both:

E|(y, 7) = £Epe /komzcos =ysin 6)) 4 ¢ o (1.106)
E,(y, 7) = TREge Jkom(@cos 6mysin6) 4 ¢ o

where 7 is the amplitude transmission coefficient (from Equation 1.90). The angles
0, and 6, are related by Snell’s law.

sin 8, = il sin 6,
n2 (1.107)

2
_ o2
cos 6, = /1 ——5sin” 6,
)

Substituting these values into Equation 1.67, we get an expression for the trans-
mitted amplitude, E,, that is a function of the incident angle 6,

2
E, = 7#Ey exp {—jkon2<z\}1 — 2L sin g, — y% sin ol>} (1.108)
ny 2

Physically, we can understand refraction by considering what happens to the
wavefronts at the interface. On the incident side, the wavefront strikes the interface
and is partially reflected and partially transmitted. If 8, < 6, the wavefronts must
be continuous across the interface. The node where these two wavefronts connect
travels along the interface with a velocity v,,,,., as shown in Figure 1.15. The ve-
locity of this intersection, v,,4., is simply

Vnode, = Vp,/SIN 6, (1.109)



1.11 Wave Description of Total Internal Reflection

m n
7]
0y z Vnode

y Vphase 1 Vphase 2
\J
Figure 1.14 A plane wave incident
on a dielectric interface at angle 6,
will refract at an angle 6, in the
second medium. The reflected ray is m ny
not shown for clarity.

Figure 1.15 The plane waves on either
side of the interface must connect as they
cross the interface. These connecting
nodes travel along the interface at a
velocity that depends on the angle of
incidence.

where v, is the phase velocity ¢/n; in the first medium. The transmitted wave, E,,
must travel in such a direction that the velocity of the nodes of its phase front is
identical to that of the incident field. Since the phase velocity in medium n, is
different, the only way the node velocities can be matched is if the direction of the
transmitted field refracts to angle 6, such that

vm/sin 6, = v, fsin 6, (1.110)

This is simply a restatement of Snell’s law.

As the angle of incidence, 6, increases, the transmitted waves must make a
larger angle, 6,, to maintain the proper velocity of the intersection at the interface.
At 6, = 6., cos 6, goes to zero, and the transmitted field contains only one
component,

E, = iEpeV 0" + cc.  at 6, =4, (1.111)

This is the description of a plane wave traveling parallel to the interface in the
y direction. This direction will yield a node velocity that is as slow as can be
achieved in medium n,. In the ray picture, we would say that the transmitted ray is
parallel to the plane of incidence. Figure 1.16 shows this condition.

What happens as 6, increases beyond the critical angle? The radical in Equation
1.107, which describes cos 6,, becomes imaginary, so the transmitted electric am-
plitude is described as

E, = Tx\EOe—konz\/(nf/@) sin? 6, — 1z ejkO"l sin 4,y (1.112)
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ny ns

I ——

Figure 1.16 At the
critical angle, the
transmitted plane waves
travel parallel to the
interface.

where we choose the proper sign of the radical to ensure that the amplitude decays
as distance from the interface increases. This cumbersome form is often written as

E, = 72Ege” Y %e/” (1.113)
where 7 represents the attenuation coefficient (units: cm™!)

ni

v = kon, ?sinz 6, — 1 (1.114)
2

and f3 represents the propagation coefficient (units: rads/cm)
B = kgnq sin 6, (1.115)

Inspection of Equation 1.113 shows that the field amplitude decays exponentially
away from the interface. This field is called the evanescent field. The evanescent
field contains real values of E and H, but they are 90° out of phase with each other.
The evanescent field contains reactive power, not real power. In reactive power, no
work is done, but energy is stored. This evanescent field is very important to device
applications. It is possible to tap some of the energy away using special structures.
We will see many such devices in later chapters concerning switches, modulators,
and couplers.

Returning to the physical picture, when 6, is increased beyond the critical angle,
as in Figure 1.17, the node velocity in n; is slower than the minimum possible
velocity of nodes in medium n,. In medium n,, the phase fronts advance beyond
their generating counterparts in n;. As the transmitted wave fronts travel ahead,
they run up on wavefronts emitted from earlier nodes. At a certain distance, the
fronts in n, will be 180° out of phase with the nodes of n;, and destructive inter-
ference will occur. The larger the angle of incidence 6, the slower the node veloc-
ity in n; will be. Destructive interference will occur sooner, leading to increased
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antenuation. We see from Equation 1.114 that the attenuation coefficient vy increases
as the angle of incidence is increased.

n no

Figure 1.17 Beyond the critical
angle, the plane waves on the
low-index side of the interface
travel faster than the nodes due to
the incident field. They get ahead
of their source nodes, and then
react back against them.

1.12 PHASE SHIFT UPON REFLECTION

A more subtle yet critically important effect that occurs in TIR is the phase shift
of the light upon reflection. These phase shifts help determine which modes propa-
gate in a waveguide. After reflection, the optical signal slightly lags in phase com-
pared to the incident wave. One can view this phase shift as being due to the extra
distance the light travels when going into and returning from the low-index media
during its evanescent phase (the Goos-Hénchen shift, described in Problem 1.22
and Appendix A), or one can view the phase shift as occurring due to the mixing
of two waves that are slightly out of phase (the reflected and evanescent wave).
How big is the phase shift? For a TE wave, the phase shift can be determined
directly by writing the amplitude reflection formula, Equation 1.90, in polar form:

E, _(nycos 6; — nycos 6,)
E; (nycos 6, + n,cos 6,)

= |rl /2% (1.116)

The reflection coefficient is described in terms of its magnitude, Irl, and phase
shift, 2&. Beyond the critical angle, cos 6, becomes purely imaginary
(cos 6, = V1 — ni/n3 sin® 6;). Letting & = n; cos 6y, and jB = n, cos 6,, Equation
1.116 can be rewritten as:

E _a—jB

1.11

Substituting the value of cos 6, from Equation 1.107, the phase of this transfer
function is:
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2®,p = tan” ! <—_£> —tan~ ! <E)
a a

=2 tan~! <:aé> (1.118)
! —Vn? sin? 6; — n}
n COS 01

This equation is only valid for 6, > 6,,. The magnitude of r is obviously unity.
We leave it as an exercise to show that the correct formula for TM waves is given
by:

—n? Vn?sin? 6; — n?
@y = tan”! ( RaL 2 (1.119)
ny np COs 01
Figure 1.18 shows the dependence of @ as a function of the angle of incidence
6, for two ratios n;/n,. The ratios 0.3 and 0.7 correspond to the approximate values
of a GaAs-air and glass-air interface, respectively. The phase shift for the TM

case is similar.

/2
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£ ny/ny =0.3
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& ///nglm =0.7
=
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Angle of Incidence

Figure 1.18 In this plot of the phase shift ® as a
function of the angle of incidence, 6, note that the phase
shift below the critical angle is zero.

For angles of incidence below the critical angle, there is no phase shift upon
reflection (actually, the phase shift can be O or 7, depending on the relative
indices).

Example 1.5 Fields Surrounding a Total Internal Reflection

Consider the situation shown in Figure 1.19. A TE wave is incident from GaAs with an
index of 3.4 onto the GaAs-air interface, at an angle of incidence of 45°. Describe the
electric fields in all regions surrounding the interface. Assume that the light has a wave-
length of A = 1um.
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Figure 1.19 A wave
incident at 45° on a
dielectric interface from the
high-index side is TE
polarized, and has a
wavelength of 1 um.

Solution:

For this dielectric interface, the critical angle is:
P |
0., = sin 1§ =17.1° (1.120)

The incident wave is well above the critical angle, and will undergo total internal reflection.
The electric field in the air region (z > 0) is given by:

E(y, 2) = TRE;, e Te/kom sin 61y (1.121)
where kg = 27/1um = 6.283 X 10* rads/cm, and

2
_ /m . -
Y= k0n2 _2Sll'l 01 -1
n (1.122)

= 6.283 X 10*-1-V3.4%0.707)> — 1 = 1.37 X 10°cm™!

The value of the transmission coefficient, 7, is directly derived from Equation 1.89.

2n, cos 6,
T= (1.123)
ny cos 6; + ny, cos 6,

In this case, 6, is imaginary,

2
cos , = —[1 — %sin2 6, = —j2.19 (1.124)
2

where j stands for V —1. We chose the negative sign of the radical in order to assure that
the field in Equation 1.108 decays with increasing z. Having chosen the sign, we must use
it consistently throughout the rest of the calculation. Plugging cos 6, into Equation 1.123
yields

___2-34-0707)
(3.4-0.707) — j2.19

A complex transmission coefficient simply means that there is a relative phase difference
between the incident and transmitted wave. In phasor notation, the transmission coefficient,
7, is equal to

(1.125)
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—2.1
=7l é[tan_l(O) - tan‘1<———9>]
24 (1.126)
= 1.48£42.38°
The transmitted electric field in the air (z > 0) is
E(Z, y) — 1.48Eie—1.37><105zej1.51><105yej(wt+42.38°) (1'127)

where mixed units (radians and degrees) are used in the last term, but the meaning should
be clear.

The reflected field can be found noting that Irl = 1, and the phase shift is given by
Equation 1.116 to be:

, —Vnisin? 6, — n}

q)TE = tan_
ny cos 6,
_, —V3.4%0.707)2 — 1
= tan 340707 (1.128)
= —42.29°
Thus the reflected field (z < 0) will be given by:
E(y, 7) = Ee /%034 0707(-y=2) j(at~84.6") (1.129)

Note that the amplitude of the reflected electric field is identical to the incident field, but
there is a phase delay of 2® between the two waves.

1.13 SUMMARY

This chapter reviewed Maxwell’s equations, using them to establish a set of units
(MKS) and several important quantities and concepts. We derived the wave equa-
tion, and solved it in homogeneous media. From the solution, we developed ex-
pressions for phase and group velocity. The concept of the wavevector was
introduced and related to the angular frequency of a wave. Using boundary condi-
tions, we developed expressions for the reflection and refraction of electromagnetic
waves from a dielectric interface.

We then explored total internal reflection. Snell’s law was used to illustrate the
ray picture of total internal reflection. While Snell’s law, if used with complex
angles, can give a total description of the evanescent fields associated with these
reflections, the wave description based on Maxwell’s equations provides a clearer
picture. Using the wave picture, we used the Fresnel formulae for reflection and
transmission at a dielectric interface to develop expressions for phase shift associ-
ated with TIR. This phase shift always accompanies TIR, and plays a unique role
in establishing which rays will be allowed inside an optical waveguide.

The material parameters, u and €, play a critical role in determining the action
of a wave at a dielectric interface. We alluded to the frequency dependence of these
material parameters in the discussion of group velocity. This will be further devel-
oped in Chapter 3.
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PROBLEMS

1.

Derive the Fresnel amplitude reflection and transmission coefficients for an
electromagnetic wave that is polarized with the electric field in the plane of
incidence (TM wave).

We simplified Equation 1.24 by assuming that the term —V(E - Vele) is negligible.
Determine how small Ve must be for this assumption to be reasonable. Starting from
the exact wave equation (with the above term included), use separation of variables
to solve for the one-dimensional wave (i.e., E = Z(z)T(¢)). Solve for T(¢) in terms of
separation constant k and (ue)!’2. From the resulting equation for Z(z), find a rough

value for Ve over a characteristic distance of one wavelength of the field. How small
Ae

must — be to make it negligible (say less than 1 percent in magnitude) compared to
€

the other terms in the wave equation?

k
Show that for a harmonic wave, the average value (S) = (E X H) = p 5.’2_ E3,
wp

for a wave with wavevector k and electric amplitude E,.

Fermat’s principle states that if a light ray travels between two points, it follows the
path that takes the least time. Use Fermat’s principle to a) verify that the angle of
incidence equals the angle of reflection for a simple plane mirror, and b) derive
Snell’s law for a ray crossing a dielectric interface.

Use conservation of momentum and the fact that a photon has momentum given by
p = %k = finky, where k is the vacuum wavevector of the photon, to a) show that
the angle of incidence equals the angle of reflection for a simple plane mirror, and
b) derive Snell’s law for a ray crossing a dielectric interface.



