Chapter 2 The Planar Slab Waveguide

2.2 THE INFINITE SLAB WAVEGUIDE

The simplest optical waveguide structure is the step-index planar slab waveguide.
The slab waveguide, shown in Figure 2.1, consists of a high-index dielectric layer
surrounded on either side by lower-index material. The slab is infinite in extent in
the yz plane, but finite in the x direction. The index of refraction of the guiding
slab, ny, must be larger than that of the cover material, n,, or the substrate material,
n,, in order for total internal reflection to occur at the interfaces. If the cover and
substrate materials have the same index of refraction, the waveguide is called sym-
metric; otherwise the waveguide is called asymmetric. The symmetric waveguide
18 a special case of the asymmetric waveguide.

Figure 2.1 The planar slab waveguide consists of three materials,
arranged such that the guiding index of refraction (ny) is larger than
the surrounding substrate (n,) and cover (n.) indices.

The slab waveguide is clearly an idealization of real waveguides, because real
waveguides are not infinite in width. However, the one-dimensional analysis we
will develop is directly applicable to many real problems, and the techniques form
the foundation for further understanding. We will begin by solving the wave equa-
tion using boundary conditions for the slab waveguide structure. We will always
choose the direction of propagation to be along the z axis. This will lead naturally
to the concept of modes. We will then develop formal mode concepts such as or-
thogonality, completeness, and modal expansion. We will see that a waveguide
structure can support only a discrete number of guided modes. The mode picture
is very powerful, and will be used extensively as we delve deeper into the subject
of wave propagation in structures.

2.3 ELECTROMAGNETIC ANALYSIS OF THE
PLANAR WAVEGUIDE

Consider the waveguide structure shown in Figure 2.1. The three indices are cho-
sen such that n; > n; > n,, and the guiding layer has a thickness . The choice of
the coordinate system is critical in making the problem as simple as possible [1].
The appropriate coordinate system for this planar problem is a rectilinear cartesian
system, because the three components of the field, E,, E,, and E, are not coupled
by reflections. For example, an electric field polarized in the y direction, E,, will
still be an E, field upon reflection at either interface; the reflection does not couple
any of the vector field into the x or z directions. Because this is an asymmetric
waveguide structure, we place the x = 0 coordinate at one of the interfaces, choos-
ing arbitrarily the top interface (between nyand n,).



2.3 Electromagnetic Analysis of the Planar Waveguide

We must consider two possible electric field polarizations, transverse electric
or transverse magnetic [2]. The axis of the waveguide is oriented in the z direction.
The & vector of the guided wave will zigzag down the z axis, striking the interfaces
at angles greater than the critical angle. The field can be transverse electric (TE)
or transverse magnetic (TM), depending on the orientation of the electric field.
The TE case has no longitudinal component along the z axis; the electric field is
transverse to the plane of incidence established by the normal to the interface, and
by the k vector. Because of the different boundary conditions that control both
fields, the TE and TM cases are distinguished in their mode characteristics as well
as their polarization. We will consider the TE case, leaving derivation of the TM
case to problems at the end of the chapter.

Transverse Electric Transverse Magnetic

Figure 2.2 Transverse electric (TE) and transverse magnetic (TM) configurations.
A cross indicates the field entering the page, and “0” indicates the field coming
out of the page.

In the TE case, the E field is polarized along the y axis (into the page) of Figure
2.2. We assume the waveguide is excited by a source with frequency wg and a
vacuum wavevector of magnitude k,, where lkgl = wy/c. To find the allowed modes
of the waveguide, we must first solve the wave equation in each dielectric region,
and then use the boundary conditions to connect these solutions. For a sinusoidal
wave with angular frequency wy, the wave equation (Equation 1.26) for the elec-
tric field components in each region can be put in the scalar form:

V2E, + k§niE, = 0 (2.1)

where n; = ng, ng, or n., depending on the location. Ey(x, z) is a function of both x
and z, but because the slab is infinite in extent in the y direction, E, is independent
of y. Due to the translational invariance of the structure in the z direction, we do
not expect the amplitude to vary along the z axis, but we do expect that the phase
varies. We write a trial solution to Equation 2.1 in the form:

E(x, z) = Ey(x)e /P% (2.2)

B is a propagation coefficient along the z direction, but we do not know its
magnitude yet. Plugging this trial solution into Equation 2.1, and noting that
d’E,ldy* = 0,

9’E

@X + (k§n? — BHE, =0 2.3)
The choice of n; depends on the position x. For x > 0, we would use n., while for
0 > x > —h, we would use ny, etc. The general solution to Equation 2.3 will depend
on the relative magnitude of B with respect to kgn;. Consider the case where
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B > kon;. The transverse wave equation (Equation 2.3) will have a general solution
with a real exponential form:

Ey(x) = Ege*VF"~Rmx for B> kom; 2.4)

where E; is the field amplitude at x = 0. To be physically reasonable, we always
choose the negatively decaying branch of Equation 2.4. This solution should re-
mind you of the evanescent field of a total internally reflected (TIR) wave at an
interface.

In the case where B < kyn;, the solution has an oscillatory form:

E/(x) = Eoe™V8"Fx  for B < kon; (2.5)

So depending on the value of 3, the solution can be either oscillatory or exponen-
tially decaying. If B > kon; we define an attenuation coefficient, vy, as:

y= VB —kgn} (2.6)

and describe the field as E\(x) = Ege”"". Compare this to Equation 1.114 for the
evanescent field of a TIR wave. If 8 < kyn;, then we define a transverse wavevec-
tor, K, as:

K=V k%n,2 - ﬁ7 .7

so Ey(x) = Ege™*. Using Equation 2.7, we see that 8 and « can be geometrically
related to the total wavevector, k = kyny, in the guiding film.

X k2 = x2 + P2 k
jK

Figure 2.3 B and « are the longitudinal and transverse components,
respectively, of the wavevector k.

B and k are called the longitudinal and transverse wavevectors, respectively,
inside the guiding film. These terms will be used extensively to characterize many
types of waveguide mode, so become familiar with the relation shown in
Figure 2.3.

2.4 THE LONGITUDINAL WAVEVECTOR: B

The longitudinal wavevector B is used to identify individual modes. While any
number of parameters could be chosen to fill this role, 8 is defined as the eigen-
value of the mode. Figure 2.4 plots the transverse electric field distribution in a
slab waveguide for various values of 8 [3]. In this plot, we allow the angle between
k and z to vary from 90° to 0°. This in effect varies the value of 8, which is simply



2.4 The Longitudinal Wavevector: 8

the z component of the wavevector, from 0 to B,,,, = k. The value of 8 is plotted
along the horizontal axis.
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Figure 2.4 This ray and wave picture shows the electromagnetic fields as a
function of S.

The top sketch of Figure 2.4 shows the ray picture of the field, while the lower
sketch shows the wave picture (solutions to Equations 2.4 and 2.5). There are three
special points on the B axis, and the first one is at B = kgn.. For 8 < kqn,,
solutions to the wave equation in all regions of space are oscillatory (Equation 2.5).
The ray picture shows that when B ~ 0, the wave travels nearly perpendicular to
the z axis of the waveguide. Like light going through a sheet of glass, the ray
refracts at the dielectric interfaces, but is not trapped. An oscillatory wave is pres-
ent in the three distinct dielectric regions.

The second special point occurs at kon,. For kon. < B < kgn,, the ray picture
shows a ray total-internal-reflecting at the film-cover interface, but refracting at
the lower substrate-film interface. In the wave picture, the field becomes evanes-
cent in the cover region. The field will still be oscillatory in the film and substrate
regions. This condition is called a substrate mode.

As [ increases beyond kgn,, the evanescent conditions are satisfied in both the
cover and substrate region, while oscillatory solutions are found in the film itself.
Such solutions are, in fact, the guided modes of the film. The ray picture depicts a
ray trapped between the two interfaces.

If B continues to increase beyond kon, (although physically it is not clear how
this could ever be done, since B is simply the z component of konyg, then Equation
2.4 is satisfied everywhere, so the three regions must have exponential solutions.
The only way to satisfy boundary conditions is to choose exponentially increasing
fields in the surrounding dielectric regions, causing the field to explode toward
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infinity as the distance from the film increases. Satisfying this solution would re-
quire infinite energy, so the entire premise of the solution is unphysical.
A guided wave must satisfy the condition that

kons < B < konf (28)

where it is assumed that n. < n,. This is a universal condition for any dielectric
waveguide, regardless of geometry.

2.5 EIGENVALUES FOR THE SLAB WAVEGUIDE

To find the values of B that lead to allowed solutions to the wave equation, we must
apply the boundary conditions to the general solutions developed in Equations 2.4
and 2.5. Assume that 8 satisfies Equation 2.8. Then the transverse portions of the
electric field amplitudes in the three regions are

Ey(x) = Ae™ " 0<x
E,(x) = B cos(kgx) + C sin(kzx) —h<x<0 2.9)
E(x)=De”™™®  x< —p

where A, B, C, and D are amplitude coefficients to be determined from the bound-
ary conditions, vy, and v, refer to the attenuation coefficients in the cover and sub-
strate, respectively (Equation 2.8), and k; is the transverse component of k in the
guiding film (from Equation 2.6). The boundary conditions that connect the solu-
tions at the interfaces are:

1. Tangential E is continuous.
2. Tangential H is continuous.

We rarely worry about continuity of the normal components of D and B, be-
cause these conditions are almost always satisfied when we satisfy the transverse
conditions. Since E,, as defined in Equation 2.9, is transverse to the interface,
boundary condition 1 is straightforward to apply. What about the condition for
continuity of magnetic field H? Should we write down a set of equations similar to
Equations 2.9 that describe the magnetic field as a function of position? Indeed,
we could do that, but there is usually a simpler way to derive expressions for the
magnetic field. If we assume that the fields are harmonic, then we can describe the
magnetic intensity in terms of the electric intensity, and derive a simple boundary
condition for the magnetic terms. Recall that

B
VXE=— (2.10)
at
For a sinusoidal field,
B(t) = uH(t) = uHye'* (2.11)
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2.5 Eigenvalues for the Slab Waveguide

V X E(@) = —ujoH(r) (2.12)

We need an expression for the tangential component (the z component in this case)
of H. Expanding the V X term of Equation 2.10 into its individual components,
and taking the z component, we get
i <6E oE,
Z

- —%) = —ujwH, 13
. 6y> MjwH, - @213

Since there is no E, component to the field (it would not vary with y even if it did
exist due to the infinite planar structure), we get an explicit equation for the tan-
gential component of the magnetic field, H,,

j OE
.= ;L—(;ECX 2.149)

The tangential component of H, H,, is defined in terms of the electric field quan-
tities. Since u and w are identical in all the media, the continuity of the tangential
magnetic field is guaranteed if 0E,/dx is made continuous across the interface. We
can now find the amplitude coefficients, A, B, C, and D.

At the x = 0 interface, the condition that E, be continuous requires that

Ae™*% = B cos (k7 0) + C sin(; 0) (2.15)

which is satisfied only if A = B. Making the magnetic field continuous at x = 0
requires that the first derivative of E,, dE,/dx be continuous at x = 0,

—Ayce_7”0 = _‘BKf Sin(KfO) + CKfCOS(KfO) (216)
_AYC = +CKf
yielding
Cc=-aX @.17)
Ke
All coefficients are written in terms of A. Using these coefficients, and applying
the condition that E, be continuous at x = —h (h is a positive number) yields
A[cos(—th) - X sin(—th)] = De**~ (2.18)
Kr
This can be solved for D (noting sin(—x) = —sin(x) and cos(—x) = cos(x))
D= A[cos(th) + X sin(th)] (2.19)
K
f

Putting all the terms together,
E,=Ae™™ x>0

E, = A[cos(xfx) - %;sin(fo)] —h<x<0 (2.20)

E, = A[cos(xfh) + Ye sin(th)] ePEh x<—h

K
f

where A is the amplitude at the x = 0 interface. Equation 2.20 describes the am-

plitude of the electric field in all regions of the problem. Note that negative values
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Chapter 2 The Planar Slab Waveguide

of x must be used in the guiding and substrate layers—otherwise the formula will
give nonsensical values. This equation is very handy for plotting out the mode
profiles of guided modes. We will apply it to many problems in this chapter and
text.

Having found the amplitude coefficients in Equation 2.20, is this description of
the transverse electric field complete? No! The propagation and decay constants,
Y ¥s» and kg all depend on B, which is still undefined. The fourth and final bound-

ary condition, namely the continuity of dE,/dx at x = —h, gives an equation for B.
9F, .
™ = Alkysin(kgh) — . cos(keh)] (film term)
x=—h (2.21)

=A [cos(th) + %‘3 sin(th)] Ys (substrate term)
f

Divide both sides of the equation by cos(k¢h) to get the eigenvalue equation for B.

Ye T Vs

Kf
This is a transcendental equation that must be solved numerically or graphically.
All terms depend on the value of B. It is called the characteristic equation for the
TE modes of a slab waveguide. Solution of this equation will yield the eigenvalues,
Bre that correspond to allowed TE modes in the waveguide.

Had we set up our initial problem with transverse magnetic fields, as opposed
to transverse electric fields, we would have arrived at a different characteristic
equation for the eigenvalues, By, We leave it as an exercise (see Problem 2.1) to
confirm that, for the TM case, the eigenvalue equation for f is

2 2
n + ny
K
f[n;?_Ys n%‘}’c:l

tan(hkp = I 2.23)

tan(hx,) = (2.22)

n

2
K2 — =L
v ngn? Yes

Each waveguide structure that we explore in this text will have a characteristic
equation that must be solved to find the eigenvalues of the modes.

The transcendental equation can be solved routinely with a numerical package
on a personal computer, or it can be solved graphically. The amplitude distribution
(Equation 2.20) and the transcendental equations for finding the eigenvalue (Equa-
tions 2.22 and 2.23) are three of the equations that you will use repeatedly, so they
should be programmed into a numerical routine which can be called and modified
as desired for different situations. To provide insight into the eigenequation, Ex-
ample 2.1 below shows the graphical solution.
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Example 2.1 Graphical and Numerical Solution to the g Eigenvalue Equation

Consider the planar dielectric structure shown in Figure 2.5. The guiding index has value
1.50, the substrate index is 1.45, and the cover index is 1.40. This is an asymmetric wave-
guide. The thickness of the guiding layer is Suwm. We want to determine the allowed values
of B using Equation 2.22 for this structure. Assume that light with wavelength of 1um is
used to excite the waveguide.

ng=1.40

Figure 2.5 The planar slab waveguide configuration used in
Example 2.1.

Solution:

We will use «; as the variable for plotting all the terms of the equation. This choice is
arbitrary (we could have chosen ), but it makes the argument of the tan(«sh) term linear.
All variables must be defined in terms of «;:

= V% — k§(1.4)
%=VW—%u%V (2.24)
= VK§(1.57 — &

Using these values, both sides of the TE characteristic equation (Equation 2.22) are plotted
as a function of « on the graph in Figure 2.6. The variable «; ranges from a value of 0
(when B = konp), 10 Kyax = Vkjn7 — kfn?. The tan(kh) term generates the typical pattern

10

Tan(Kh

(&)}
T

1 5000 20000

1oL

Figure 2.6 The graphical plot of Equation 2.22 for the waveguide shown in
Figure 2.5 shows four allowed « values.
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of a repeating function extending from — to +o. The right-hand side of Equation 2.22
yields a slower function that diverges toward —o around x = 20,000 cm™~! and then comes
in from +. At the points where the two curves cross, Equation 2.22 is satisfied. These
points represent allowed values of « for this waveguide. From the plot we see that the
allowed k values are approximately 5,500, 12,000, 16,500, and 21,500 cm™ L.

This plot was generated using Mathematica, although there are several other suitable
numeric packages that can perform these calculations and plots. To serve as a guide, the
Mathematica code is listed below:

nf=1.50;

ns=1.45;

nc=1.40;

h=0.0005;

lambda= 107 (—4);

k=2 Pi/lambda;

beta=Sqrt[ k*2 nf~2- kappa“2];
kappamax=Sqrt[k~2 nf"2 — k*2 ns"2]};
gammas=Sqrt[beta“2—-k"2 ns"2]};
gammac=Sqrt[beta“2—-k"2 nc"2];
Plot[{Tan[kappa h}, (gammas + gammac) /

(kappa(1 - gammas gammac/kappa~2))}, {kappa, 1, kappamax},
PlotRange ->{—10,10}]

The transcendental characteristic equation must be solved numerically, which is a rela-
tively straightforward action for many mathematical software packages. Again using
Mathematica, the following command was used repeatedly to find each root of the
equation.

FindRoot[Tan[kappa h] == (gammas + gammac)/ (kappa(1- gammas
gammac/kappa~2)), {kappa, 5000}]

The last bracket of the command tells Mathematica to begin its search around a value
of k = 5000. The program returned the first « value of 5497.16. To find higher roots, we
used values taken from the graph as starting points, and let the computer return the more
accurate value. Numerically, the eigenvalues for « were found to be 5497.16, 10963.2,
16351, and 21545 cm™!. The eigenvalues in terms of B can be found directly from the
individual « values, using Equation 2.24, to be 94087, 93608, 92819, and 91752 cm™!,
respectively.

This example shows some typical features of optical waveguides. First, the guiding film
need not be very thick. It is generally on the order of a few wavelengths. Second, the index
difference required to achieve a guiding structure is small. In this case, An = 0.05 between
the core and substrate. This is actually a huge difference compared to many practical de-
vices which have index differences as small as 0.001. Finally, inspection of Figure 2.6
shows that if the waveguide is made too thin, so that the argument «h does not extend
beyond approximately 77/2, it is possible that the two sets of lines will never cross, and
there will be no mode allowed in the structure. Material growth experimentalists sometimes
get caught in this problem after discovering that an exotic new optical material they have
designed can only be grown in layers thinner than 0.1 um before internal strain ruins the
layer.
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The example yielded four solutions for B, or four allowed modes. What does
this mean? Each mode has the same wavelength of light; they each just travel in a
slightly different direction within the waveguide. In the ray picture, the modes
would be shown as four discrete rays traveling at slightly different angles, as shown
in Figure 2.7. Notice that only a few discrete rays actually propagate in the
waveguide.

o pw

Ny

Ns

Figure 2.7 In this ray depiction of the four
allowed modes in the waveguide, each ray has
the same magnityde of k vector. They are simply
oriented slightly differently with respect to the

Z axis.

To those familiar with basic quantum mechanics, the problem outlined in Ex-
ample 2.1 should look very familiar. This graphical technique is often used to find
the allowed energy eigenvalues of a particle in a finite potential well [4]. The anal-
ogy between the particle-in-a-box and the optical waveguide problem is very
strong: both situations describe waves which are confined between two reflecting
boundaries. In both cases, the waves partially tunnel into the surrounding potential
barrier before turning around. Only certain allowed energies, in the case of the
particle, or transverse propagation coefficients («), in the case of the optical wave,
are found to create a standing wave in the one-dimensional system.

To complete the solution, the coefficient, A, should be related to a physical pa-
rameter. In practice, A is related to the power carried in the waveguide. The power
is calculated by integrating the z component of the Poynting vector over the cross-
sectional area of the guide:

1
S, = ERe(E XH:-2) (2.25)

Note that we are using the time-averaged power. The average power in a
TE mode is

P,=-| EHdx=|-—"—]|| IE,L . (2.26
e =5 ) ExHudx (2(%) _IE,Pax (2.26)

Since the integral spans only one direction, the integral has units of power per unit
length (in the y direction).

It is much more enlightening to see the actual mode solutions that correspond
to each value of B. Using the following Mathematica commands to implement
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60 Chapter 2 The Planar Slab Waveguide

Equation 2.20, and to normalize each mode according to Equation 2.26, we plotted
the total amplitude profile for each of the allowed modes in Example 2.1.

wave([x _]:= Exp[-gammac x] /; x>0

wave[x _]:= Cos[kappa x] -(gammac/kappa) Sin [kappa x]/; (x<=0) &&
(x>-h)

wave[x_]}:= (Cos[kappa h} + (gammac/kappa) Sin[kappa h])Exp[gammas
(x+h)] /; x<=-h;

amplitude=1/ Sqrt[beta/(2 omega mu) * NIntegrate[(wave[x])"2, {x,
-0.001, 0.0002}1]

Plot[amplitude * wave[x] ,{x, -h-0.0003, 0.0002}]

Figure 2.8 below illustrates the amplitude solutions for the four modes of
Example 2.1.

Mode 1 | | B = 93608
i |
w |
| ! B = 94087
Mode 0 |
Ll I T T ]
0

8 -7 6 5 4 3 -2 -1
Position (um)

Figure 2.8 The first four TE modal field patterns of the

waveguide described in Example 2.1 are shown. The

vertical lines represent the location of the dielectric
interfaces.

Since the waveguide is asymmetric, the modes are slightly asymmetric, although
it is not obvious to the casual glance. Notice that the modes have alternating even
and odd symmetry, and that the evanescent tails of the higher-order modes extend
slightly further into the cladding than do the tails of the lowest-order mode. The
modes are labeled by the number of nodes they have. The TE; mode is the lowest
order (which means the mode with the smallest value of k), and it has no nodes.
The TE; mode has one zero crossing in the waveguide, the TE, mode has 2 nodes,
etc. There will also be a set of TM modes with similar designations.



2.7 The Symmetric Waveguide

2.6 OPTICAL MODE CONFINEMENT

How much of the mode’s energy resides inside the core, and how much energy is
carried in the evanescent tail? Power in the guiding layer is found by integrating
the Poynting vector over the area of the waveguide structure. The fraction of the
power contained in the core is simply

0
P f , ES(OH (x)dx
P 2.27)
total f_w Ey (x) H;k (x) dx

The expression for the fraction of power contained in the cladding is:

Pclad =1- Pcore

(2.28)
P total P, total

There is not a simple, general, closed-form expression for these integrals, although
they are straightforward to evaluate numerically. In general, higher-order modes
are less confined than their lower-order counterparts, and are therefore more sus-
ceptible to bending loss and evanescent coupling. This general trend can be seen in
Figure 2.8, where mode O has a power confinement of 99.47 percent, while mode
3 has only 85.9 percent confinement. These percentages were determined by the
numeric evaluation of Equation 2.27 for each mode. Problem 2.9 explores the de-
pendence of the mode confinement on the size and relative indices of the wave-
guide. Mode confinement is an important property for waveguide designs. A mode
that is loosely confined will be more affected by bends and neighboring structures
than will a tightly bound mode.

2.7 THE SYMMETRIC WAVEGUIDE

Figure 2.9 shows a symmetric waveguide, where a guiding film with index ny and
thickness h is surrounded on both sides by an index n;. It is convenient to place the
coordinate system in the middle of this waveguide since the fields will reflect the
symmetry of the structure.

Figure 2.9 The symmetric waveguide is surrounded by material
with the same index of refraction. The axis of symmetry is
usually chosen to be the x = 0 axis.
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We leave it as an exercise for the reader to show that the general field descrip-
tion of a TE mode within the symmetric structure (for the coordinate system
shown in Figure 2.9) is:

E, = Ae” YOx—h/2) forx=h/2

. COS KX sin Kx

y T Aos k2 " Csin khi2

E,= *Ae?"*"D  forx< —h/2

for —h/2 <x < h/2 (2.29)

The magnetic amplitude of the TM mode can be similarly described. There are
two choices for the description of the field in the guiding layer, depending on
whether a symmetric (cosine) or antisymmetric (sine) mode is excited. The fact
that the modes can be uniquely characterized in terms of even or odd groups is a
natural consequence of the even symmetry of the index structure. The sign of the
field in the lower substrate is positive for the even modes, and negative for the odd
modes. The characteristic eigenvalue equation for the TE modes in a symmetric
waveguide is:

tan kh/2 = Y for even (cos) modes
K (2.30)

=k for odd (sin) modes
Y
The characteristic equation for the TM modes is

tan kh/2

2
<ﬂ> 24 for even (cos) modes
ng/ K

(2.31)

2
n
- (—s> £ for odd (sin) modes
nf Y

A unique feature of the symmetric waveguide is that it can always support at least
one mode. Consider the graphical solution for a symmetric waveguide described
in Example 2.2 below.

Example 2.2 The Symmetric Waveguide

Suppose the waveguide shown in Figure 2.9 has a film index of n, = 1.49, and cladding
index equal to n; = 1.485. The difference in index between the two layers is very small.
Let’s calculate what the allowed values of B are for this structure. Let the wavelength be
0.8um. We will use the graphical solution, as it best demonstrates why the symmetric
waveguide will always support at least one mode. Two thicknesses will be examined; h =
3um, and h = 15um.

Solution:

There are only two variables in this problem: y and k. As in the last example, we will plot
functions in terms of «.



2.7 The Symmetric Waveguide

v, = VB — k3n? = \/k(z,(nj% — n?) — k?

(2.32)
B=Vignl - &
Plugging numbers into these expressions, using ko = 27/A = 7.853 X 10%cm™’, yields
v=V9.176 X 107 — ¥* (2.33)

B ="V13694 X 1010 — 2

To find the eigenvalues of the TE modes, we must solve Equation 2.30. Graphically, the
functions tan xk/2, y/k, and — /vy are plotted on the same graph as a function of «. These
are plotted against « for the case where # = 3um in Figure 2.10.

10

5
10l

Figure 2.10 For the thin waveguide there is only one
allowed mode, which occurs near k = 6000cm ™',

The top curve, which corresponds to the even mode, begins at +, and terminates with
a value of 0. Notice that the tan xh/2 starts at zero and increases. It is inevitable that the
two curves will cross, so there must be at least one mode. In fact, we can generalize this
statement: a symmetric waveguide will always carry at least one guided mode.

As the waveguide is made thicker, more modes are allowed. Consider the graphical plot
of the equations for the case when the waveguide slab is 15um thick, as shown in
Figure 2.11.
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/ Figure 2.11 The thick waveguide supports both even and
odd modes.
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