
Chapter Chapter 3 3 : Vector potential and : Vector potential and 

radiation integralsradiation integrals

• Vector potentials

• Far-field radiation

• Duality theorem
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Vector PotentialsVector Potentials
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Vector differential equationsVector differential equations

Excitation: 

voltage/current source

or incident field

Sources J,M

integration

Analytic or 

numerical 

techniques

Assuming Lorentz gauge:
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Vector potential

Radiated fields

differentiation

Assuming Lorentz gauge:
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Inhomogeneous Helmholtz equations



Solution for unbounded Solution for unbounded 

homogeneous regionshomogeneous regions
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For volume currents:
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For surface currents:



Solution for unbounded Solution for unbounded 
homogeneous regionshomogeneous regions  ((22))
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For line currents:
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Once the vector potentials are found, the fields can be obtained 

from



Solution for unbounded Solution for unbounded 
homogeneous regionshomogeneous regions  ((33))

From (1) and (2), it can be shown that
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when there is only electric current source.



FarFar--field radiationfield radiation
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In far-field:

the following approximation can be applied:
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FarFar--field radiation (field radiation (22))
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Retaining only 1/R terms in (3) and (4) yields
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Note that in far-field,

and
i.e., electric field and magnetic field are perpendicular to 

each other and to the direction of propagation. Thus, 

Poynting vector becomes
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