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Chapter 7 : Antenna Synthesis

• Continuous sources vs. Discrete sources

• Schelkunoff polynomial method

• Fourier transform method

• Woodward-Lawson method

• Triangular, cosine and cosine-squared 

amplitude distributions
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Continuous sources
Recall the array factor

If the number of elements increases in a fixed-length array, 

the source approaches a continuous distribution. 

In the limit, the array factor becomes the space factor, i.e.,
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The radiation characteristics of continuous sources can 

be approximated by discrete-element arrays, i.e.,
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Schelkunoff polynomial 

method
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The array factor for an N-element, equally spaced, non-

uniform amplitude, and progressive phase excitation is given 

by

Let
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which is a polynomial of degree (N-1).
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Schelkunoff polynomial 

method (2)
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z is on a unit circle.

where z1,z2,…,zN-1 are the roots. The magnitude then 

becomes
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Schelkunoff polynomial 

method (3)
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VR=Visible Region

IR=Invisible Region

β  = 0



Schelkunoff polynomial 

method (4)
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VR=Visible Region

IR=Invisible Region

β  = π/4



Schelkunoff polynomial 

method (5)
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Schelkunoff polynomial 

method : Example
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Design a linear array with a spacing between the elements 

of d=λ/4 such that it has zeros at θ=0,π/2,π. Determine the 

number of elements, their excitation, and plot the derived 

pattern.



Schelkunoff polynomial 

method : Example pattern
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Fourier Transform Method
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The normalized space factor for a continuous line-source 

distribution of length l can be given by
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where kz is the excitation phase constant of the source. If 

I(z’)=I0/l,







 
















 


k

kkl

k

kkl

I
z

z






cos
2

cos
2

sin

)( 0SF



Fourier Transform Method (2)
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Since the current distribution extends only over -l/2≤z’≤ l/2, 
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The approximate source distribution Ia (z’) is given by
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The current distribution can then be given by
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Fourier Transform Method : 
Example 7.2
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Determine the current distribution and the approximate radiation 

pattern of a line source placed along the z-axis whose desired 

radiation pattern is symmetrical about θ=π/2, and it is given by
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Fourier Transform Method : 

Example



Fourier Transform Method : 

Linear Array
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For an odd number of elements, the array factor is given by
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For an even number of elements,
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Fourier Transform Method : 

Linear Array (2)
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For an odd number of elements, the excitation coefficients can 

be obtained by
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For an even number of elements,

  coskd

























Mmde

mMde

a
mj

mj

m

1)(
2

1

1)(
2

1

]2/)12[(

]2/)12[(















AF

AF



Fourier Transform Method : 

Example
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Same as Example 7.2 with d = λ/2; non-zero only
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Fourier Transform Method : 

Example



Quiz

A 5-element uniform linear array with a 

spacing of λλλλ between elements is designed 

to scan at θθθθ=ππππ/3. Assume that the array is 

aligned along the z-axis.

a) Find the array factor

b) Find the angle of the grating lobe.

c) Find the condition such that there exists no 

grating lobe.



Quiz solution
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Woodward-Lawson Method
• Sampling the desired pattern at various discrete 

locations.

• Use composing function of the forms:

as the field of each pattern sample

• The synthesized pattern is represented by a finite 

sum of composing functions.

• The total excitation is a sum of space harmonics.
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Woodward-Lawson Method: 

Line-source
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Let the source be represented by a sum of the following constant 
current source of length l.

Then the current source can be given by

The field pattern of each current source is given by

Composing function



Woodward-Lawson Method: 

Line-source (2)
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For an odd number samples, the total pattern becomes

bm can be obtained from the value at the sample points θm, i.e.,

In order to satisfy the periodicity of 2π and faithfully reconstruct 
the desired pattern,
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Woodward-Lawson Method: 

Line-source (3)

samples oddfor ,2,1,0,cos K






 m
l

mmm




Thus the location of each sample is given by

Therefore, M should be the closest integer to M=l/λ.
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Woodward-Lawson Method: 

Example

5,,2,1,0),2.0(cos)(cos 11  
Kmmmm

Same as Example 7.2; for l = 5λ.
Since l = 5λ, M = 5 and ∆ = 0.2.

m θθθθm bm
m θθθθm bm

0 90 1

1 78.46 1 -1 101.54 1

2 66.42 1 -2 113.58 1

3 53.13 1 -3 126.87 1

4 36.87 0 -4 143.13 0

5 0 0 -5 180 0



Woodward-Lawson Method: 
Example (2)

Composing functions for line-source (l = 5λ)



Woodward-Lawson Method: 

Linear array
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The pattern of each sample (uniform array) can be written as 
(assuming l = Nd)

Composing function
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For an odd number elements, the array factor becomes

bm can be obtained from the value at the sample points θm, i.e.,



Woodward-Lawson Method: 

Linear array (2)
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samples oddfor ,2,1,0,cos K
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The location of each sample is given by

The normalized excitation coefficient of each element is given by
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Woodward-Lawson Method: 

Example

Element number

n

Position

z’n

Coefficient

an

±1 ±0.25λλλλ 0.5696

±2 ± 0.75λλλλ -0.0345

±3 ± 1.25λλλλ -0.1001

±4 ± 1.75λλλλ 0.1108

±5 ± 2.25λλλλ -0.0460

Same as Example 7.2; for N=10 and d = λ/2.

The coefficients can be found to be

To obtain the normalized amplitude pattern of unity at θ=π/2, 

the array factor has been divided by   4998.0na



Woodward-Lawson Method: 

Example
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Triangular, cosine, cosine 

squared distributions
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Mutual Coupling

• Consider two antennas
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Mutual Coupling: 2 antennas
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Mutual Coupling: 2 antennas (2)

• As I1 and I2 change, the driving point 
impedance changes.

• In a uniform array, the phase of I1 and I2

is changed to scan the beam.

• As the beam is scanned, the driving port 
impedance in each antenna changes.

• In general, Z11,Z12=Z21,Z22 can be 
calculated using numerical techniques.

• For some special cases, they can be 
calculated analytically.



Mutual Coupling: N antennas
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Mutual Coupling: 2 dipoles



Mutual Coupling: 2 dipoles (2)


