HOMEWORK SET #2

Note: Please show <u>all the steps</u> leading to the final answer. Also, dB unit can be obtained by $A[dB] = 10 \log_{10}(A)$.

- 1. An antenna with a radiation resistance of 65 Ω , a loss resistance of 5 Ω and a reactance of -75 Ω is connected to a generator with open-circuit voltage of 20 V (peak) and internal impedance of $Z_g = 60 + j10\Omega$ via a $\lambda/2$ long transmission line with characteristic impedance of 50 Ω (a) Draw the equivalent circuit
 - (b) Determine the power supplied by the generator
 - (c) Determine the power radiated by the antenna
 - (d) Determine the power dissipated by the antenna
- 2. Repeat the previous problem assuming the transmission line is $\lambda/4$ in length.
- 3. A parabolic reflector antenna with a circular aperture of 5 m in diameter has a maximum effective area that is 75% of the physical area. The effective area was obtained assuming that PLF = -2.5 dB, $e_{cd} = 0.9$ and that the load is conjugate matched to the antenna. Determine the maximum directivity and gain of the antenna in dB when the frequency is f = 18 GHz.
- 4. The radiation intensity of an antenna can be approximated by (for $0 \le \phi \le 2\pi$)

$$U(\theta) = \begin{cases} \cos^3 \theta & 0 \le \theta < \pi/2 \\ 0 & \pi/2 \le \theta < \pi \end{cases}$$
(1)

Determine the maximum effective aperture (in m²) of the antenna if its frequency of operation is f = 12 GHz. Assume that the antenna is lossless, PLF=-1.5 dB, the input impedance of the antenna is $Z_A = 55 + j15\Omega$ and that the antenna terminals are connected to a load of $Z_L = 50\Omega$.

5. An antenna has a far-zone radiation pattern at f = 30 MHz given by

$$\mathbf{E}_{a} = I_{in}\eta(\hat{\theta}25\sin\phi(1+\cos\theta) - j\hat{\phi}30\cos\phi(1+\cos^{3}\theta))\frac{e^{-jkr}}{r},$$
(2)

where I_{in} is the terminal current.

(a) Determine the vector effective height $\mathbf{h}(\theta, \phi)$

(b) Find the open circuit voltage for this antenna when it is in the receiving mode. Assume that the field incident (f=30 MHz) from the direction $\theta = \pi/3$, $\phi = \pi/4$ is a plane wave given by

$$\mathbf{H}^{i} = \hat{\theta} 2 - j\hat{\phi} \quad [A/m]. \tag{3}$$

(c) Find the effective area (in dB) for part (b). Assume that the antenna has an input impedance of $Z_A = 58 - j9\Omega$ and a load of $Z_L = 50\Omega$ connected directly to its terminals.