HOMEWORK SET #3

Note: Please show all the steps leading to the final answer.

1. Define the right and left circularly polarized phasors as follows

$$\hat{R} = \frac{\hat{x} + j\hat{y}}{\sqrt{2}},\tag{1}$$

$$\hat{L} = \frac{\hat{x} - j\hat{y}}{\sqrt{2}}.$$
(2)

Show that any phasor $\mathbf{E} = \hat{x}E_x + \hat{y}E_y$ can be written as

$$\mathbf{E} = \frac{1}{\sqrt{2}} [\hat{R}E_R + \hat{L}E_L], \qquad (3)$$

where

$$E_R = E_x \mp j E_y. \tag{4}$$

Note that E_R and E_L are the right and left circularly polarized components of **E**. This implies that any linearly polarized wave can be decomposed to be a sum of two circularly polarized waves.

- 2. Derive equations (1) and (2) on page 5 of the chap3 slide.
- Derive the electric and magnetic fields due to a magnetic current source. (Similar to equations (3) and (4) on page 6 of the chap3 slide)
- 4. Assume that the electric field can be given in terms of a plane wave, i.e.,

$$\mathbf{E} = \mathbf{E}_0 e^{-jk \cdot \bar{r}}, \tag{5}$$

where \mathbf{E}_0 denotes the complex constant vector. Also, $\bar{k} = \hat{k}k$ with the unit vector \hat{k} denoting the propagation direction and $k = |\bar{k}| = \omega \sqrt{\mu \epsilon}$ denoting the propagation constant. Likewise, \bar{r} denotes the vector representing the field point. If the field point is far away from the source, i.e., in the "source-free" region, show that

(a) $\bar{k} \cdot \mathbf{E} = 0$, i.e., the electric field is perpendicular to the propagation direction.

(b) $\mathbf{H} \cdot \mathbf{E} = 0$, i.e., the electric field is perpendicular to the magnetic field.

(c) $\bar{k} \cdot \mathbf{H} = 0$, i.e., the magnetic field is also perpendicular to the propagation direction.

5. Determine the radiation resistance, the radiation intensity, and the directivity of the small dipole.