
An Introduction to Matlab

Version 2.3

David F. Griffiths

Department of Mathematics

The University
Dundee DD1 4HN

With additional material by Ulf Carlsson
Department of Vehicle Engineering

KTH, Stockholm, Sweden

Copyright c©1996 by David F. Griffiths. Amended October, 1997, August 2001, September 2005.
This introduction may be distributed provided that it is not be altered in any way and that its source
is properly and completely specified.

Contents

1 MATLAB 2

2 Starting Up 2
2.1 Windows Systems 2
2.2 Unix Systems 2
2.3 Command Line Help 2
2.4 Demos 3

3 Matlab as a Calculator 3

4 Numbers & Formats 3

5 Variables 3
5.1 Variable Names 3

6 Suppressing output 4

7 Built–In Functions 4
7.1 Trigonometric Functions 4
7.2 Other Elementary Functions 4

8 Vectors 4
8.1 The Colon Notation 5
8.2 Extracting Bits of a Vector 5
8.3 Column Vectors 5
8.4 Transposing 5

9 Keeping a record 6

10 Plotting Elementary Functions 6
10.1 Plotting—Titles & Labels 7
10.2 Grids 7
10.3 Line Styles & Colours 7
10.4 Multi–plots 7
10.5 Hold 7
10.6 Hard Copy 8
10.7 Subplot 8
10.8 Zooming 8
10.9 Formatted text on Plots 8
10.10Controlling Axes 9

11 Keyboard Accelerators 9

12 Copying to and from Word and other
applications 10
12.1 Window Systems 10
12.2 Unix Systems 10

13 Script Files 10

14 Products, Division & Powers of Vec-
tors 11
14.1 Scalar Product (*) 11
14.2 Dot Product (.*) 11
14.3 Dot Division of Arrays (./) 12
14.4 Dot Power of Arrays (.^) 12

15 Examples in Plotting 13

16 Matrices—Two–Dimensional Arrays 13
16.1 Size of a matrix 14
16.2 Transpose of a matrix 14
16.3 Special Matrices 14
16.4 The Identity Matrix 14
16.5 Diagonal Matrices 15
16.6 Building Matrices 15
16.7 Tabulating Functions 15
16.8 Extracting Bits of Matrices 16
16.9 Dot product of matrices (.*) 16
16.10Matrix–vector products 16
16.11Matrix–Matrix Products 17
16.12Sparse Matrices 17

17 Systems of Linear Equations 18
17.1 Overdetermined system of linear equa-

tions 18

18 Characters, Strings and Text 20

19 Loops 20

20 Logicals 21
20.1 While Loops 22
20.2 if...then...else...end 23

21 Function m–files 23
21.1 Examples of functions 24

22 Further Built–in Functions 25
22.1 Rounding Numbers 25
22.2 The sum Function 25
22.3 max & min 26
22.4 Random Numbers 26
22.5 find for vectors 27
22.6 find for matrices 27

23 Plotting Surfaces 27

24 Timing 28

25 On–line Documentation 29

26 Reading and Writing Data Files 29
26.1 Formatted Files 30
26.2 Unformatted Files 30

27 Graphic User Interfaces 31

28 Command Summary 32

1

1 MATLAB

• Matlab is an interactive system for doing nu-
merical computations.

• A numerical analyst called Cleve Moler wrote
the first version of Matlab in the 1970s. It
has since evolved into a successful commercial
software package.

• Matlab relieves you of a lot of the mundane
tasks associated with solving problems nu-
merically. This allows you to spend more time
thinking, and encourages you to experiment.

• Matlab makes use of highly respected algo-
rithms and hence you can be confident about
your results.

• Powerful operations can be performed using
just one or two commands.

• You can build up your own set of functions
for a particular application.

• Excellent graphics facilities are available, and
the pictures can be inserted into LATEX and
Word documents.

These notes provide only a brief glimpse of the
power and flexibility of the Matlab system. For a
more comprehensive view we recommend the book

Matlab Guide
D.J. Higham & N.J. Higham

SIAM Philadelphia, 2000, ISBN: 0-89871-469-9.

2 Starting Up

2.1 Windows Systems

On Windows systems MATLAB is started by double-
clicking the MATLAB icon on the desktop or by
selecting MATLAB from the start menu.
The starting procedure takes the user to the Com-
mand window where the Command line is indicated
with ’>>’. Used in the calculator mode all Matlab
commands are entered to the command line from
the keyboard.
Matlab can be used in a number of different ways or
modes; as an advanced calculator in the calculator
mode, in a high level programming language mode
and as a subroutine called from a C-program. More
information on the first two of these modes is given
below.
Help and information on Matlab commands can be
found in several ways,

• from the command line by using the ’help
topic’ command (see below),

• from the separate Help window found under
the Help menu or

• from the Matlab helpdesk stored on disk or
on a CD-ROM.

Another useful facility is to use the ’lookfor keyword’
command, which searches the help files for the key-
word. See Exercise 16.1 (page 17) for an example
of its use.

2.2 Unix Systems

• You should have a directory reserved for sav-
ing files associated with Matlab. Create such
a directory (mkdir) if you do not have one.
Change into this directory (cd).

• Start up a new xterm window (do xterm & in
the existing xterm window).

• Launch Matlab in one of the xterm windows
with the command

matlab

After a short pause, the logo will be shown
followed by a window containing the Matlab
interface. Should you wish to run Matlab in
an xterm window, use the command

matlab -nojvm

and, following dislpay of the logo, the Matlab
prompt >> will appear.

Type quit at any time to exit from Mat-
lab.

2.3 Command Line Help

Help is available from the command line prompt.
Type help help for “help” (which gives a brief syn-
opsis of the help system), help for a list of topics.
The first few lines of this read

HELP topics:

matlab/general - General purpose commands.

matlab/ops - Operators and special char...

matlab/lang - Programming language const...

matlab/elmat - Elementary matrices and ma...

matlab/elfun - Elementary math functions.

matlab/specfun - Specialized math functions.

(truncated lines are shown with . . .). Then to ob-
tain help on “Elementary math functions”, for instance,
type

>> help elfun

2

This gives rather a lot of information so, in order to see
the information one screenful at a time, first issue the
command more on, i.e.,

>> more on

>> help elfun

Hit any key to progress to the next page of information.

2.4 Demos

Demonstrations are invaluable since they give an indi-
cation of Matlabs capabilities. A comprehensive set are
available by typing the command

>> demo

(Warning: this will clear the values of all current vari-
ables.)

3 Matlab as a Calculator

The basic arithmetic operators are + - * / ^ and these
are used in conjunction with brackets: (). The symbol
^ is used to get exponents (powers): 2^4=16.
You should type in commands shown following
the prompt: >>.

>> 2 + 3/4*5

ans =

5.7500

>>

Is this calculation 2 + 3/(4*5) or 2 + (3/4)*5? Mat-
lab works according to the priorities:

1. quantities in brackets,

2. powers 2 + 3^2 ⇒2 + 9 = 11,

3. * /, working left to right (3*4/5=12/5),

4. + -, working left to right (3+4-5=7-5),

Thus, the earlier calculation was for 2 + (3/4)*5 by
priority 3.

4 Numbers & Formats

Matlab recognizes several different kinds of numbers

Type Examples
Integer 1362,−217897
Real 1.234,−10.76
Complex 3.21− 4.3i (i =

√
−1)

Inf Infinity (result of dividing by 0)
NaN Not a Number, 0/0

The “e” notation is used for very large or very small
numbers:
-1.3412e+03 = −1.3412× 103 = −1341.2
-1.3412e-01 = −1.3412× 10−1 = −0.13412
All computations in MATLAB are done in double pre-
cision, which means about 15 significant figures. The

Command Example of Output
>>format short 31.4162(4–decimal places)
>>format short e 3.1416e+01
>>format long e 3.141592653589793e+01
>>format short 31.4162(4–decimal places)
>>format bank 31.42(2–decimal places)

format—how Matlab prints numbers—is controlled by
the “format” command. Type help format for full list.
Should you wish to switch back to the default format
then format will suffice.
The command

format compact

is also useful in that it suppresses blank lines in the
output thus allowing more information to be displayed.

5 Variables

>> 3-2^4

ans =

-13

>> ans*5

ans =

-65

The result of the first calculation is labelled “ans” by
Matlab and is used in the second calculation where its
value is changed.
We can use our own names to store numbers:

>> x = 3-2^4

x =

-13

>> y = x*5

y =

-65

so that x has the value −13 and y = −65. These can
be used in subsequent calculations. These are examples
of assignment statements: values are assigned to
variables. Each variable must be assigned a value before
it may be used on the right of an assignment statement.

5.1 Variable Names

Legal names consist of any combination of letters and
digits, starting with a letter. These are allowable:

NetCost, Left2Pay, x3, X3, z25c5

These are not allowable:

Net-Cost, 2pay, %x, @sign

Use names that reflect the values they represent.
Special names: you should avoid using
eps = 2.2204e-16 = 2−54 (The largest number such
that 1 + eps is indistinguishable from 1) and
pi = 3.14159... = π.
If you wish to do arithmetic with complex numbers,both
i and j have the value

√
−1 unless you change them

3

>> i,j, i=3

ans = 0 + 1.0000i

ans = 0 + 1.0000i

i = 3

6 Suppressing output

One often does not want to see the result of intermedi-
ate calculations—terminate the assignment statement
or expression with semi–colon

>> x=-13; y = 5*x, z = x^2+y

y =

-65

z =

104

>>

the value of x is hidden. Note also we can place several
statements on one line, separated by commas or semi–
colons.

Exercise 6.1 In each case find the value of the expres-
sion in Matlab and explain precisely the order in which
the calculation was performed.

i) -2^3+9 ii) 2/3*3

iii) 3*2/3 iv) 3*4-5^2*2-3

v) (2/3^2*5)*(3-4^3)^2 vi) 3*(3*4-2*5^2-3)

7 Built–In Functions

7.1 Trigonometric Functions

Those known to Matlab are
sin, cos, tan

and their arguments should be in radians.
e.g. to work out the coordinates of a point on a circle of
radius 5 centred at the origin and having an elevation
30o = π/6 radians:

>> x = 5*cos(pi/6), y = 5*sin(pi/6)

x =

4.3301

y =

2.5000

The inverse trig functions are called asin, acos, atan

(as opposed to the usual arcsin or sin−1 etc.). The
result is in radians.

>> acos(x/5), asin(y/5)

ans = 0.5236

ans = 0.5236

>> pi/6

ans = 0.5236

7.2 Other Elementary Functions

These include sqrt, exp, log, log10

>> x = 9;

>> sqrt(x),exp(x),log(sqrt(x)),log10(x^2+6)

ans =

3

ans =

8.1031e+03

ans =

1.0986

ans =

1.9395

exp(x) denotes the exponential function exp(x) = ex

and the inverse function is log:

>> format long e, exp(log(9)), log(exp(9))

ans = 9.000000000000002e+00

ans = 9

>> format short

and we see a tiny rounding error in the first calculation.
log10 gives logs to the base 10. A more complete list
of elementary functions is given in Table 2 on page 32.

8 Vectors

These come in two flavours and we shall first describe
row vectors: they are lists of numbers separated by ei-
ther commas or spaces. The number of entries is known
as the “length” of the vector and the entries are often
referred to as “elements” or “components” of the vec-
tor.The entries must be enclosed in square brackets.

>> v = [1 3, sqrt(5)]

v =

1.0000 3.0000 2.2361

>> length(v)

ans =

3

Spaces can be vitally important:

>> v2 = [3+ 4 5]

v2 =

7 5

>> v3 = [3 +4 5]

v3 =

3 4 5

We can do certain arithmetic operations with vectors
of the same length, such as v and v3 in the previous
section.

>> v + v3

ans =

4.0000 7.0000 7.2361

>> v4 = 3*v

v4 =

3.0000 9.0000 6.7082

>> v5 = 2*v -3*v3

v5 =

-7.0000 -6.0000 -10.5279

>> v + v2

??? Error using ==> +

Matrix dimensions must agree.

4

i.e. the error is due to v and v2 having different lengths.
A vector may be multiplied by a scalar (a number—
see v4 above), or added/subtracted to another vector
of the same length. The operations are carried out
elementwise.
We can build row vectors from existing ones:

>> w = [1 2 3], z = [8 9]

>> cd = [2*z,-w], sort(cd)

w =

1 2 3

z =

8 9

cd =

16 18 -1 -2 -3

ans =

-3 -2 -1 16 18

Notice the last command sort’ed the elements of cd

into ascending order.
We can also change or look at the value of particular
entries

>> w(2) = -2, w(3)

w =

1 -2 3

ans =

3

8.1 The Colon Notation

This is a shortcut for producing row vectors:

>> 1:4

ans =

1 2 3 4

>> 3:7

ans =

3 4 5 6 7

>> 1:-1

ans =

[]

More generally a : b : c produces a vector of entries
starting with the value a, incrementing by the value b
until it gets to c (it will not produce a value beyond c).
This is why 1:-1 produced the empty vector [].

>> 0.32:0.1:0.6

ans =

0.3200 0.4200 0.5200

>> -1.4:-0.3:-2

ans =

-1.4000 -1.7000 -2.0000

8.2 Extracting Bits of a Vector

>> r5 = [1:2:6, -1:-2:-7]

r5 =

1 3 5 -1 -3 -5 -7

To get the 3rd to 6th entries:

>> r5(3:6)

ans =

5 -1 -3 -5

To get alternate entries:

>> r5(1:2:7)

ans =

1 5 -3 -7

What does r5(6:-2:1) give?
See help colon for a fuller description.

8.3 Column Vectors

These have similar constructs to row vectors. When
defining them, entries are separated by ; or “newlines”

>> c = [1; 3; sqrt(5)]

c =

1.0000

3.0000

2.2361

>> c2 = [3

4

5]

c2 =

3

4

5

>> c3 = 2*c - 3*c2

c3 =

-7.0000

-6.0000

-10.5279

so column vectors may be added or subtracted pro-
vided that they have the same length.

8.4 Transposing

We can convert a row vector into a column vector (and
vice versa) by a process called transposing—denoted by
’.

>> w, w’, c, c’

w =

1 -2 3

ans =

1

-2

3

c =

1.0000

3.0000

2.2361

ans =

1.0000 3.0000 2.2361

>> t = w + 2*c’

t =

3.0000 4.0000 7.4721

>> T = 5*w’-2*c

T =

3.0000

5

-16.0000

10.5279

If x is a complex vector, then x’ gives the complex con-
jugate transpose of x:

>> x = [1+3i, 2-2i]

ans =

1.0000 + 3.0000i 2.0000 - 2.0000i

>> x’

ans =

1.0000 - 3.0000i

2.0000 + 2.0000i

Note that the components of x were defined without
a * operator; this means of defining complex numbers
works even when the variable i already has a numeric
value. To obtain the plain transpose of a complex num-
ber use .’ as in

>> x.’

ans =

1.0000 + 3.0000i

2.0000 - 2.0000i

9 Keeping a record

Issuing the command

>> diary mysession

will cause all subsequent text that appears on the screen
to be saved to the file mysession located in the direc-
tory in which Matlab was invoked. You may use any
legal filename except the names on and off. The record
may be terminated by

>> diary off

The file mysession may be edited with your favourite
editor (the Matlab editor, emacs, or even Word) to re-
move any mistakes.
If you wish to quit Matlab midway through a calcula-
tion so as to continue at a later stage:

>> save thissession

will save the current values of all variables to a file
called thissession.mat. This file cannot be edited.
When you next startup Matlab, type

>> load thissession

and the computation can be resumed where you left off.
A list of variables used in the current session may be
seen with

>> whos

See help whos and help save.

>> whos

Name Size Elements Bytes Density Complex

ans 1 by 1 1 8 Full No

v 1 by 3 3 24 Full No

v1 1 by 2 2 16 Full No

v2 1 by 2 2 16 Full No

v3 1 by 3 3 24 Full No

v4 1 by 3 3 24 Full No

x 1 by 1 1 8 Full No

y 1 by 1 1 8 Full No

Grand total is 16 elements using 128 bytes

10 Plotting Elementary Func-
tions

Suppose we wish to plot a graph of y = sin 3πx for
0 ≤ x ≤ 1. We do this by sampling the function at
a sufficiently large number of points and then joining
up the points (x, y) by straight lines. Suppose we take
N + 1 points equally spaced a distance h apart:

>> N = 10; h = 1/N; x = 0:h:1;

defines the set of points x = 0, h, 2h, . . . , 1−h, 1. Alter-
nately, we may use the command linspace: The gen-
eral form of the command is linspace (a,b,n) which
generates n+ 1 equispaced points between a and b, in-
clusive. So, in this case we would use the command

>> x = linspace (0,1,11);

The corresponding y values are computed by

>> y = sin(3*pi*x);

and finally, we can plot the points with

>> plot(x,y)

The result is shown in Figure 1, where it is clear that
the value of N is too small.

Figure 1: Graph of y = sin 3πx for 0 ≤ x ≤ 1 using
h = 0.1.

On changing the value of N to 100:

>> N = 100; h = 1/N; x = 0:h:1;

>> y = sin(3*pi*x); plot(x,y)

we get the picture shown in Figure 2.

6

Figure 2: Graph of y = sin 3πx for 0 ≤ x ≤ 1 using
h = 0.01.

10.1 Plotting—Titles & Labels

To put a title and label the axes, we use

>> title(’Graph of y = sin(3pi x)’)

>> xlabel(’x axis’)

>> ylabel(’y-axis’)

The strings enclosed in single quotes, can be anything
of our choosing. Some simple LATEX commands are
available for formatting mathematical expressions and
Greek characters—see Section 10.9.
See also ezplot the “Easy to use function plotter”.

10.2 Grids

A dotted grid may be added by

>> grid

This can be removed using either grid again, or grid

off.

10.3 Line Styles & Colours

The default is to plot solid lines. A solid white line is
produced by

>> plot(x,y,’w-’)

The third argument is a string whose first character
specifies the colour(optional) and the second the line
style. The options for colours and styles are:

Colours Line Styles

y yellow . point
m magenta o circle
c cyan x x-mark
r red + plus
g green - solid
b blue * star
w white : dotted
k black -. dashdot

-- dashed

The number of available plot symbols is wider than
shown in this table. Use help plot to obtain a full
list. See also help shapes.

10.4 Multi–plots

Several graphs may be drawn on the same figure as in

>> plot(x,y,’w-’,x,cos(3*pi*x),’g--’)

A descriptive legend may be included with

>> legend(’Sin curve’,’Cos curve’)

which will give a list of line–styles, as they appeared
in the plot command, followed by a brief description.
Matlab fits the legend in a suitable position, so as not
to conceal the graphs whenever possible.
For further information do help plot etc.
The result of the commands

>> plot(x,y,’w-’,x,cos(3*pi*x),’g--’)

>> legend(’Sin curve’,’Cos curve’)

>> title(’Multi-plot ’)

>> xlabel(’x axis’), ylabel(’y axis’)

>> grid

is shown in Figure 3. The legend may be moved man-
ually by dragging it with the mouse.

Figure 3: Graph of y = sin 3πx and y = cos 3πx for
0 ≤ x ≤ 1 using h = 0.01.

10.5 Hold

A call to plot clears the graphics window before plot-
ting the current graph. This is not convenient if we
wish to add further graphics to the figure at some later
stage. To stop the window being cleared:

>> plot(x,y,’w-’), hold on

>> plot(x,y,’gx’), hold off

“hold on” holds the current picture; “hold off” re-
leases it (but does not clear the window, which can be
done with clf). “hold” on its own toggles the hold
state.

7

10.6 Hard Copy

To obtain a printed copy select Print from the File
menu on the Figure toolbar.
Alternatively one can save a figure to a file for later
printing (or editing). A number of formats is avail-
able (use help print to obtain a list). To save a file
in “Encapsulated PostScript” format, issue the Matlab
command

print -deps fig1

which will save a copy of the image in a file called
fig1.eps.

10.7 Subplot

The graphics window may be split into an m× n array
of smaller windows into which we may plot one or more
graphs. The windows are counted 1 to mn row–wise,
starting from the top left. Both hold and grid work on
the current subplot.

>> subplot(221), plot(x,y)

>> xlabel(’x’),ylabel(’sin 3 pi x’)

>> subplot(222), plot(x,cos(3*pi*x))

>> xlabel(’x’),ylabel(’cos 3 pi x’)

>> subplot(223), plot(x,sin(6*pi*x))

>> xlabel(’x’),ylabel(’sin 6 pi x’)

>> subplot(224), plot(x,cos(6*pi*x))

>> xlabel(’x’),ylabel(’cos 6 pi x’)

subplot(221) (or subplot(2,2,1)) specifies that the
window should be split into a 2× 2 array and we select
the first subwindow.

10.8 Zooming

We often need to “zoom in” on some portion of a plot
in order to see more detail. Clicking on the “Zoom in”
or “Zoom out” button on the Figure window is simplest
but one can also use the command

>> zoom

Pointing the mouse to the relevant position on the plot
and clicking the left mouse button will zoom in by a

factor of two. This may be repeated to any desired
level.
Clicking the right mouse button will zoom out by a
factor of two.
Holding down the left mouse button and dragging the
mouse will cause a rectangle to be outlined. Releasing
the button causes the contents of the rectangle to fill
the window.
zoom off turns off the zoom capability.

Exercise 10.1 Draw graphs of the functions

y = cosx

y = x

for 0 ≤ x ≤ 2 on the same window. Use the zoom fa-
cility to determine the point of intersection of the two
curves (and, hence, the root of x = cosx) to two signif-
icant figures.

The command clf clears the current figure while close

1 will close the window labelled “Figure 1”. To open
a new figure window type figure or, to get a window
labelled “Figure 9”, for instance, type figure (9). If
“Figure 9” already exists, this command will bring this
window to the foreground and the result subsequent
plotting commands will be drawn on it.

10.9 Formatted text on Plots

It is possible to change to format of text on plots so
as to increase or decrease its size and also to typeset
simple mathematical expressions (in LATEX form).
We shall give two illustrations.
First we plot the first 100 terms in the sequence {xn}
given by xn =

(
1 + 1

n

)n
and then graph the function

φ(x) = x3 sin2(3πx) on the interval −1 ≤ x ≤ 1. The
commands

>> set(0,’Defaultaxesfontsize’,16);

>> n = 1:100; x = (1+1./n).^n;

>> subplot (211)

>> plot(n,x,’.’,[0 max(n)],exp(1)*[1 1],...

’--’,’markersize’,8)

>> title(’x_n = (1+1/n)^n’,’fontsize’,12)

>> xlabel(’n’), ylabel(’x_n’)

>> legend(’x_n’,’y = e^1 = 2.71828...’,4)

>> %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

>> subplot (212)

>> x = -2:.02:2; y = x.^3.*sin(3*pi*x).^2;

>> plot(x,y,’linewidth’,2)

>> legend(’y = x^3sin^2 3\pi x’,4)

>> xlabel(’x’)

produce the graph shown below. The salient features
of these commands are

1. The first line increases the size of the default font
size used for the axis labels, legends and titles.

2. The size of the plot symbol “.” is changed from
the default (6) to size 8 by the additional string
followed by value “’markersize’,8”.

8

3. The strings x_n are formatted as xn to give sub-
scripts while x^3 leads to superscripts x3.

Note also that sin23πx translates into the Matlab
command sin(3*pi*x).^2—the position of the
exponent is different.

4. Greek characters α, β, . . . , ω,Ω are produced by
the strings ’\alpha’, ’\beta’, . . . ,’\omega’, ’\Omega’.
the integral symbol:

∫
is produced by ’\int’.

5. The thickness of the line used in the lower graph
is changed from its default value (0.5) to 2.

6. Use help legend to determine the meaning of
the last argument in the legend commands.

One can determine the current value of any plot prop-
erty by first obtaining its “handle number” and then
using the get command such as

>> handle = plot (x,y,’.’)

>> get (handle,’markersize’)

ans =

6

Experiment also with set (handle) (which will list
possible values for each property) and
set(handle,’markersize’,12)

which will increase the size of the marker (a dot in this
case) to 12. Also, all plot properties can be edited from

the Figure window by selecting the Tools menu from
the toolbar. For instance, to change the linewidth

of a graph, first select the curve by double clicking
(it should then change its appearance) and then select

Line Properties. . . from the Tools . This will pop

up a dialogue window from which the width, colour,
style,. . . of the curve may be changed.

10.10 Controlling Axes

Once a plot has been created in the graphics window
you may wish to change the range of x and y values
shown on the picture.

>> clf, N = 100; h = 1/N; x = 0:h:1;

>> y = sin(3*pi*x); plot(x,y)

>> axis([-0.5 1.5 -1.2 1.2]), grid

The axis command has four parameters, the first two
are the minimum and maximum values of x to use on
the axis and the last two are the minimum and maxi-
mum values of y. Note the square brackets. The result
of these commands is shown in Figure 4. Look at help

axis and experiment with the commands axis equal,
axis verb, axis square, axis normal, axis tight in
any order.

Figure 4: The effect of changing the axes of a plot.

11 Keyboard Accelerators

One can recall previous Matlab commands by using the
↑ and ↓ cursor keys. Repeatedly pressing ↑ will review
the previous commands (most recent first) and, if you
want to re-execute the command, simply press the re-
turn key.
To recall the most recent command starting with p, say,
type p at the prompt followed by ↑. Similarly, typing
pr followed by ↑ will recall the most recent command
starting with pr.
Once a command has been recalled, it may be edited
(changed). You can use ← and → to move backwards
and forwards through the line, characters may be in-
serted by typing at the current cursor position or deleted
using the Del key. This is most commonly used when
long command lines have been mistyped or when you
want to re–execute a command that is very similar to
one used previously.
The following emacs–like commands may also be used:

cntrl a move to start of line
cntrl e move to end of line
cntrl f move forwards one character
cntrl b move backwards one character
cntrl d delete character under the cursor

Once you have the command in the required form, press
return.

Exercise 11.1 Type in the commands

9

>> x = -1:0.1:1;

>> plot(x,sin(pi*x),’w-’)

>> hold on

>> plot(x,cos(pi*x),’r-’)

Now use the cursor keys with suitable editing to execute:

>> x = -1:0.05:1;

>> plot(x,sin(2*pi*x),’w-’)

>> plot(x,cos(2*pi*x),’r-.’), hold off

12 Copying to and from Word
and other applications

There are many situations where one wants to copy
the output resulting from a Matlab command (or com-
mands) into a Windows application such as Word or
into a Unix file editor such as “emacs” or “vi”.

12.1 Window Systems

Copying material is made possible on the Windows op-
erating system by using the Windows clipboard.
Also, pictures can be exported to files in a number of
alternative formats such as encapsulated postscript for-
mat or in jpeg format. Matlab is so frequently used as
an analysis tool that many manufacturers of measure-
ment systems and software find it convenient to pro-
vide interfaces to Matlab which make it possible, for
instance, to import measured data directly into a *.mat

Matlab file (see load and save in Section 9).

Example 12.1 Copying a figure into Word.

Diagrams prepared in Matlab are easily exported to
other Windows applications such as Word. Suppose
a plot of the functions sin(2πft) and sin(2πft + π/4),
with f = 100, is needed in a report written in Word.
We create a time vector, t, with 500 points distributed
over 5 periods and then evaluate and plot the two func-
tion vectors.

>> t = [1:1:500]/500/20;

>> f = 100;

>> y1 = sin(2*pi*f*t);

>> y2 = sin(2*pi*f*t+pi/4);

>> plot(t,y1,’-’,t,y2,’--’);

>> axis([0 0.05 -1.5 1.5]);

>> grid

In order to copy the plot into a Word document

• Select “Copy Figure” under the Edit menu on
the figure windows toolbar.

• Switch to the Word application if it is already
running, otherwise open a Word document.

• Place the cursor in the desired position in the
document and select “Paste” under the “Edit”
menu in the Word tool bar.

12.2 Unix Systems

In order to carry out the following exercise, you should
have Matlab running in one window and either Emacs
or Vi running in another.
To copy material from one window to another, (here
l means click Left Mouse Button, etc)

First select the material to copy by l on the start of the
material you want and then either dragging the mouse
(with the buttom down) to highlight the text, or r at
the end of the material. Next move the mouse into the
other window and l at the location you want the text
to appear. Finally, click the m .
When copying from another application into Matlab
you can only copy material to the prompt line. On
Unix systems figures are normally saved in files (see
Section 10.6) which are then imported into other doc-
uments.

13 Script Files

Script files are normal ASCII (text) files that contain
Matlab commands. It is essential that such files have
names having an extension .m (e.g., Exercise4.m) and,
for this reason, they are commonly known as m-files.
The commands in this file may then be executed using
>> Exercise4

Note: the command does not include the file name ex-
tension .m.
It is only the output from the commands (and not the
commands themselves) that are displayed on the screen.
Script files are created with your favourite editor under
Unix while, under Windows, click on the “New Docu-
ment” icon at the top left of the main Matlab window
to pop up a new window showing the “M-file Editor”.
Type in your commands and then save (to a file with a
.m extension).
To see the commands in the command window prior to
their execution:
>> echo on

and echo off will turn echoing off.
Any text that follows % on a line is ignored. The main
purpose of this facility is to enable comments to be
included in the file to describe its purpose.
To see what m-files you have in your current directory,
use
>> what

Exercise 13.1 1. Type in the commands from §10.7
into a file called exsub.m.

2. Use what to check that the file is in the correct
area.

3. Use the command type exsub to see the contents
of the file.

4. Execute these commands.

See §21 for the related topic of function files.

10

14 Products, Division & Pow-
ers of Vectors

14.1 Scalar Product (*)

We shall describe two ways in which a meaning may be
attributed to the product of two vectors. In both cases
the vectors concerned must have the same length.
The first product is the standard scalar product. Sup-
pose that u and v are two vectors of length n, u being
a row vector and v a column vector:

u = [u1, u2, . . . , un] , v =


v1

v2

...
vn

 .
The scalar product is defined by multiplying the corre-
sponding elements together and adding the results to
give a single number (scalar).

u v =

n∑
i=1

uivi.

For example, if u = [10,−11, 12], and v =

[
20
−21
−22

]
then n = 3 and

u v = 10× 20 + (−11)× (−21) + 12× (−22) = 167.

We can perform this product in Matlab by

>> u = [10, -11, 12], v = [20; -21; -22]

>> prod = u*v % row times column vector

Suppose we also define a row vector w and a column
vector z by

>> w = [2, 1, 3], z = [7; 6; 5]

w =

2 1 3

z =

7

6

5

and we wish to form the scalar products of u with w

and v with z.

>> u*w

??? Error using ==> *

Inner matrix dimensions must agree.

an error results because w is not a column vector. Recall
from page 5 that transposing (with ’) turns column
vectors into row vectors and vice versa.

So, to form the scalar product of two row vectors or two
column vectors,

>> u*w’ % u & w are row vectors

ans =

45

>> u*u’ % u is a row vector

ans =

365

>> v’*z % v & z are column vectors

ans =

-96

We shall refer to the Euclidean length of a vector as the
norm of a vector; it is denoted by the symbol ‖u‖ and
defined by

‖u‖ =

√√√√ n∑
i=1

|ui|2,

where n is its dimension. This can be computed in
Matlab in one of two ways:

>> [sqrt(u*u’), norm(u)]

ans =

19.1050 19.1050

where norm is a built–in Matlab function that accepts a
vector as input and delivers a scalar as output. It can
also be used to compute other norms: help norm.

Exercise 14.1 The angle, θ, between two column vec-
tors x and y is defined by

cos θ =
x′y

‖x‖ ‖y‖ .

Use this formula to determine the cosine of the angle
between

x = [1, 2, 3]′ and y = [3, 2, 1]′.

Hence find the angle in degrees.

14.2 Dot Product (.*)

The second way of forming the product of two vectors
of the same length is known as the Hadamard product.
It is not often used in Mathematics but is an invalu-
able Matlab feature. It involves vectors of the same
type. If u and v are two vectors of the same type (both
row vectors or both column vectors), the mathematical
definition of this product, which we shall call the dot
product, is the vector having the components

u · v = [u1v1, u2v2, . . . , unvn].

The result is a vector of the same length and type as
u and v. Thus, we simply multiply the corresponding
elements of two vectors.
In Matlab, the product is computed with the opera-
tor .* and, using the vectors u, v, w, z defined on
page 11,

>> u.*w

ans =

20 -11 36

>> u.*v’

ans =

200 231 -264

>> v.*z, u’.*v

ans =

140 -126 -110

ans =

200 231 -264

11

Example 14.1 Tabulate the function y = x sinπx for
x = 0, 0.25, . . . , 1.

It is easier to deal with column vectors so we first define
a vector of x-values: (see Transposing: §8.4)
>> x = (0:0.25:1)’;

To evaluate y we have to multiply each element of the
vector x by the corresponding element of the vector
sinπx:

x × sinπx = x sinπx
0 × 0 = 0

0.2500 × 0.7071 = 0.1768
0.5000 × 1.0000 = 0.5000
0.7500 × 0.7071 = 0.5303
1.0000 × 0.0000 = 0.0000

To carry this out in Matlab:

>> y = x.*sin(pi*x)

y =

0

0.1768

0.5000

0.5303

0.0000

Note: a) the use of pi, b) x and sin(pi*x) are both
column vectors (the sin function is applied to each el-
ement of the vector). Thus, the dot product of these is
also a column vector.

14.3 Dot Division of Arrays (./)

There is no mathematical definition for the division of
one vector by another. However, in Matlab, the opera-
tor ./ is defined to give element by element division—it
is therefore only defined for vectors of the same size and
type.

>> a = 1:5, b = 6:10, a./b

a =

1 2 3 4 5

b =

6 7 8 9 10

ans =

0.1667 0.2857 0.3750 0.4444 0.5000

>> a./a

ans =

1 1 1 1 1

>> c = -2:2, a./c

c =

-2 -1 0 1 2

Warning: Divide by zero

ans =

-0.5000 -2.0000 Inf 4.0000 2.5000

The previous calculation required division by 0—notice
the Inf, denoting infinity, in the answer.

>> a.*b -24, ans./c

ans =

-18 -10 0 12 26

Warning: Divide by zero

ans =

9 10 NaN 12 13

Here we are warned about 0/0—giving a NaN (Not a
Number).

Example 14.2 Estimate the limit

lim
x→0

sinπx

x
.

The idea is to observe the behaviour of the ratio sinπx
x

for a sequence of values of x that approach zero. Sup-
pose that we choose the sequence defined by the column
vector
>> x = [0.1; 0.01; 0.001; 0.0001]

then

>> sin(pi*x)./x

ans =

3.0902

3.1411

3.1416

3.1416

which suggests that the values approach π. To get a
better impression, we subtract the value of π from each
entry in the output and, to display more decimal places,
we change the format

>> format long

>> ans -pi

ans =

-0.05142270984032

-0.00051674577696

-0.00000516771023

-0.00000005167713

Can you explain the pattern revealed in these numbers?
We also need to use ./ to compute a scalar divided by
a vector:

>> 1/x

??? Error using ==> /

Matrix dimensions must agree.

>> 1./x

ans =

10 100 1000 10000

so 1./x works, but 1/x does not.

14.4 Dot Power of Arrays (.^)

To square each of the elements of a vector we could, for
example, do u.*u. However, a neater way is to use the
.^ operator:

>> u.^2

ans =

100 121 144

>> u.*u

ans =

100 121 144

12

>> u.^4

ans =

10000 14641 20736

>> v.^2

ans =

400

441

484

>> u.*w.^(-2)

ans =

2.5000 -11.0000 1.3333

Recall that powers (.^ in this case) are done first, before
any other arithmetic operation.

15 Examples in Plotting

Example 15.1 Draw graphs of the functions

i) y = sin x
x

ii) u = 1
(x−1)2

+ x

iii) v = x2+1
x2−4

iv) w = (10−x)1/3−2

(4−x2)1/2

for 0 ≤ x ≤ 10.

>> x = 0:0.1:10;

>> y = sin(x)./x;

>> subplot(221), plot(x,y), title(’(i)’)

Warning: Divide by zero

>> u = 1./(x-1).^2 + x;

>> subplot(222),plot(x,u), title(’(ii)’)

Warning: Divide by zero

>> v = (x.^2+1)./(x.^2-4);

>> subplot(223),plot(x,v),title(’(iii)’)

Warning: Divide by zero

>> w = ((10-x).^(1/3)-1)./sqrt(4-x.^2);

Warning: Divide by zero

>> subplot(224),plot(x,w),title(’(iv)’)

Note the repeated use of the “dot” operators.
Experiment by changing the axes (page 9), grids (page 7)
and hold(page 7).

>> subplot(222),axis([0 10 0 10])

>> grid

>> grid

>> hold on

>> plot(x,v,’--’), hold off, plot(x,y,’:’)

Exercise 15.1 Enter the vectors

U = [6, 2, 4], V = [3,−2, 3, 0],

W =

 3
−4

2
−6

 , Z =

 3
2
2
7


into Matlab.

1. Which of the products

U*V, V*W, U*V’, V*W’, W*Z’, U.*V

U’*V, V’*W, W’*Z, U.*W, W.*Z, V.*W

is legal? State whether the legal products are row
or column vectors and give the values of the legal
results.

2. Tabulate the functions

y = (x2 + 3) sinπx2

and
z = sin2 πx/(x−2 + 3)

for x = 0, 0.2, . . . , 10. Hence, tabulate the func-
tion

w =
(x2 + 3) sinπx2 sin2 πx

(x−2 + 3)
.

Plot a graph of w over the range 0 ≤ x ≤ 10.

16 Matrices—Two–Dimensional
Arrays

Row and Column vectors are special cases of matrices.
An m × n matrix is a rectangular array of numbers
having m rows and n columns. It is usual in a math-
ematical setting to include the matrix in either round
or square brackets—we shall use square ones. For ex-
ample, when m = 2, n = 3 we have a 2× 3 matrix such
as

A =

[
5 7 9
1 −3 −7

]
To enter such an matrix into Matlab we type it in row
by row using the same syntax as for vectors:

>> A = [5 7 9

1 -3 -7]

A =

5 7 9

1 -3 -7

Rows may be separated by semi-colons rather than a
new line:

>> B = [-1 2 5; 9 0 5]

B =

-1 2 5

9 0 5

>> C = [0, 1; 3, -2; 4, 2]

C =

0 1

3 -2

4 2

13

>> D = [1:5; 6:10; 11:2:20]

D =

1 2 3 4 5

6 7 8 9 10

11 13 15 17 19

So A and B are 2× 3 matrices, C is 3× 2 and D is 3× 5.
In this context, a row vector is a 1 × n matrix and a
column vector a m× 1 matrix.

16.1 Size of a matrix

We can get the size (dimensions) of a matrix with the
command size

>> size(A), size(x)

ans =

2 3

ans =

3 1

>> size(ans)

ans =

1 2

So A is 2× 3 and x is 3× 1 (a column vector). The last
command size(ans) shows that the value returned by
size is itself a 1×2 matrix (a row vector). We can save
the results for use in subsequent calculations.

>> [r c] = size(A’), S = size(A’)

r =

3

c =

2

S =

3 2

16.2 Transpose of a matrix

Transposing a vector changes it from a row to a column
vector and vice versa (see §8.4). The extension of this
idea to matrices is that transposing interchanges rows
with the corresponding columns: the 1st row becomes
the 1st column, and so on.

>> D, D’

D =

1 2 3 4 5

6 7 8 9 10

11 13 15 17 19

ans =

1 6 11

2 7 13

3 8 15

4 9 17

5 10 19

>> size(D), size(D’)

ans =

3 5

ans =

5 3

16.3 Special Matrices

Matlab provides a number of useful built–in matrices
of any desired size.
ones(m,n) gives an m× n matrix of 1’s,

>> P = ones(2,3)

P =

1 1 1

1 1 1

zeros(m,n) gives an m× n matrix of 0’s,

>> Z = zeros(2,3), zeros(size(P’))

Z =

0 0 0

0 0 0

ans =

0 0

0 0

0 0

The second command illustrates how we can construct
a matrix based on the size of an existing one. Try
ones(size(D)).
An n×n matrix that has the same number of rows and
columns and is called a square matrix.
A matrix is said to be symmetric if it is equal to its
transpose (i.e. it is unchanged by transposition):

>> S = [2 -1 0; -1 2 -1; 0 -1 2],

S =

2 -1 0

-1 2 -1

0 -1 2

>> St = S’

St =

2 -1 0

-1 2 -1

0 -1 2

>> S-St

ans =

0 0 0

0 0 0

0 0 0

16.4 The Identity Matrix

The n× n identity matrix is a matrix of zeros except
for having ones along its leading diagonal (top left to
bottom right). This is called eye(n) in Matlab (since
mathematically it is usually denoted by I).

>> I = eye(3), x = [8; -4; 1], I*x

I =

1 0 0

0 1 0

0 0 1

x =

8

-4

1

ans =

8

-4

1

14

Notice that multiplying the 3× 1 vector x by the 3× 3
identity I has no effect (it is like multiplying a number
by 1).

16.5 Diagonal Matrices

A diagonal matrix is similar to the identity matrix ex-
cept that its diagonal entries are not necessarily equal
to 1.

D =

[−3 0 0
0 4 0
0 0 2

]
is a 3×3 diagonal matrix. To construct this in Matlab,
we could either type it in directly

>> D = [-3 0 0; 0 4 0; 0 0 2]

D =

-3 0 0

0 4 0

0 0 2

but this becomes impractical when the dimension is
large (e.g. a 100 × 100 diagonal matrix). We then use
the diag function.We first define a vector d, say, con-
taining the values of the diagonal entries (in order) then
diag(d) gives the required matrix.

>> d = [-3 4 2], D = diag(d)

d =

-3 4 2

D =

-3 0 0

0 4 0

0 0 2

On the other hand, if A is any matrix, the command
diag(A) extracts its diagonal entries:

>> F = [0 1 8 7; 3 -2 -4 2; 4 2 1 1]

F =

0 1 8 7

3 -2 -4 2

4 2 1 1

>> diag(F)

ans =

0

-2

1

Notice that the matrix does not have to be square.

16.6 Building Matrices

It is often convenient to build large matrices from smaller
ones:

>> C=[0 1; 3 -2; 4 2]; x=[8;-4;1];

>> G = [C x]

G =

0 1 8

3 -2 -4

4 2 1

>> A, B, H = [A; B]

A =

5 7 9

1 -3 -7

B =

-1 2 5

9 0 5

ans =

5 7 9

1 -3 -7

-1 2 5

9 0 5

so we have added an extra column (x) to C in order to
form G and have stacked A and B on top of each other
to form H.

>> J = [1:4; 5:8; 9:12; 20 0 5 4]

J =

1 2 3 4

5 6 7 8

9 10 11 12

20 0 5 4

>> K = [diag(1:4) J; J’ zeros(4,4)]

K =

1 0 0 0 1 2 3 4

0 2 0 0 5 6 7 8

0 0 3 0 9 10 11 12

0 0 0 4 20 0 5 4

1 5 9 20 0 0 0 0

2 6 10 0 0 0 0 0

3 7 11 5 0 0 0 0

4 8 12 4 0 0 0 0

The command spy(K) will produce a graphical display
of the location of the nonzero entries in K (it will also
give a value for nz—the number of nonzero entries):

>> spy(K), grid

16.7 Tabulating Functions

This has been addressed in earlier sections but we are
now in a position to produce a more suitable table for-
mat.

Example 16.1 Tabulate the functions y = 4 sin 3x and
u = 3 sin 4x for x = 0, 0.1, 0.2, . . . , 0.5.

>> x = 0:0.1:0.5;

>> y = 4*sin(3*x); u = 3*sin(4*x);

>> [x’ y’ u’]

ans =

0 0 0

0.1000 1.1821 1.1683

0.2000 2.2586 2.1521

0.3000 3.1333 2.7961

0.4000 3.7282 2.9987

0.5000 3.9900 2.7279

Note the use of transpose (’) to get column vectors.
(we could replace the last command by [x; y; u;]’)
We could also have done this more directly:

>> x = (0:0.1:0.5)’;

>> [x 4*sin(3*x) 3*sin(4*x)]

15

16.8 Extracting Bits of Matrices

We may extract sections from a matrix in much the
same way as for a vector (page 5).
Each element of a matrix is indexed according to which
row and column it belongs to. The entry in the ith row
and jth column is denoted mathematically by Ai,j and,
in Matlab, by A(i,j). So

>> J

J =

1 2 3 4

5 6 7 8

9 10 11 12

20 0 5 4

>> J(1,1)

ans =

1

>> J(2,3)

ans =

7

>> J(4,3)

ans =

5

>> J(4,5)

??? Index exceeds matrix dimensions.

>> J(4,1) = J(1,1) + 6

J =

1 2 3 4

5 6 7 8

9 10 11 12

7 0 5 4

>> J(1,1) = J(1,1) - 3*J(1,2)

J =

-5 2 3 4

5 6 7 8

9 10 11 12

7 0 5 4

In the following examples we extract i) the 3rd column,
ii) the 2nd and 3rd columns, iii) the 4th row, and iv)
the “central” 2× 2 matrix. See §8.1.

>> J(:,3) % 3rd column

ans =

3

7

11

5

>> J(:,2:3) % columns 2 to 3

ans =

2 3

6 7

10 11

0 5

>> J(4,:) % 4th row

ans =

7 0 5 4

>> J(2:3,2:3) % rows 2 to 3 & cols 2 to 3

ans =

6 7

10 11

Thus, : on its own refers to the entire column or row
depending on whether it is the first or the second index.

16.9 Dot product of matrices (.*)

The dot product works as for vectors: corresponding
elements are multiplied together—so the matrices in-
volved must have the same size.

>> A, B

A =

5 7 9

1 -3 -7

B =

-1 2 5

9 0 5

>> A.*B

ans =

-5 14 45

9 0 -35

>> A.*C

??? Error using ==> .*

Matrix dimensions must agree.

>> A.*C’

ans =

0 21 36

1 6 -14

16.10 Matrix–vector products

We turn next to the definition of the product of a matrix
with a vector. This product is only defined for column
vectors that have the same number of entries as the
matrix has columns. So, if A is an m× n matrix and x
is a column vector of length n, then the matrix–vector
Ax is legal.
An m × n matrix times an n × 1 matrix ⇒ a m × 1
matrix.
We visualise A as being made up of m row vectors
stacked on top of each other, then the product cor-
responds to taking the scalar product (See §14.1) of
each row of A with the vector x: The result is a column
vector with m entries.

Ax =

[
5 7 9

1 −3 −7

]  8
−4

1


=

[
5× 8 + 7× (−4) + 9× 1

1× 8 + (−3)× (−4) + (−7)× 1

]
=

[
21
13

]
It is somewhat easier in Matlab:

>> A = [5 7 9; 1 -3 -7]

A =

5 7 9

1 -3 -7

>> x = [8; -4; 1]

x =

8

-4

1

>> A*x

ans =

16

21

13

(m× n) times (n ×1)⇒ (m× 1).

>> x*A

??? Error using ==> *

Inner matrix dimensions must agree.

Unlike multiplication in arithmetic, A*x is not the
same as x*A.

16.11 Matrix–Matrix Products

To form the product of an m×n matrix A and a n× p
matrix B, written as AB, we visualise the first matrix
(A) as being composed of m row vectors of length n
stacked on top of each other while the second (B) is vi-
sualised as being made up of p column vectors of length
n:

A = m rows


 ...

 , B =

 · · ·


︸ ︷︷ ︸
p columns

,

The entry in the ith row and jth column of the product
is then the scalarproduct of the ith row of A with the
jth column of B. The product is an m× p matrix:

(m× n) times (n ×p)⇒ (m× p).

Check that you understand what is meant by working
out the following examples by hand and comparing with
the Matlab answers.

>> A = [5 7 9; 1 -3 -7]

A =

5 7 9

1 -3 -7

>> B = [0, 1; 3, -2; 4, 2]

B =

0 1

3 -2

4 2

>> C = A*B

C =

57 9

-37 -7

>> D = B*A

D =

1 -3 -7

13 27 41

22 22 22

>> E = B’*A’

E =

57 -37

9 -7

We see that E = C’ suggesting that

(A*B)’ = B’*A’
Why is B ∗A a 3× 3 matrix while A ∗B is 2× 2?

Exercise 16.1 It is often necessary to factorize a ma-
trix, e.g., A = BC or A = STXS where the factors are
required to have specific properties. Use the ’lookfor
keyword’ command to make a list of factorizations com-
mands in Matlab.

16.12 Sparse Matrices

Matlab has powerful techniques for handling sparse ma-
trices — these are generally large matrices (to make the
extra work involved worthwhile) that have only a very
small proportion of non–zero entries.

Example 16.2 Create a sparse 5× 4 matrix S having
only 3 non–zero values: S1,2 = 10, S3,3 = 11 and S5,4 =
12.

We first create 3 vectors containing the i–index, the j–
index and the corresponding values of each term and
we then use the sparse command.

>> i = [1, 3, 5]; j = [2,3,4];

>> v = [10 11 12];

>> S = sparse (i,j,v)

S =

(1,2) 10

(3,3) 11

(5,4) 12

>> T = full(S)

T =

0 10 0 0

0 0 0 0

0 0 11 0

0 0 0 0

0 0 0 12

The matrix T is a “full” version of the sparse matrix S.

Example 16.3 Develop Matlab code to create, for any
given value of n, the sparse (tridiagonal) matrix

B =



1 n
−2 2 n− 1

−3 3 n− 2

. . .
. . .

. . .

−n+ 1 n− 1 1
−n n


We define three column vectors, one for each “diago-
nal” of non–zeros and then assemble the matrix using
spdiags (short for sparse diagonals). The vectors are
named l, d and u. They must all have the same length
and only the first n − 1 terms of l are used while the
last n − 1 terms of u are used. spdiags places these
vectors in the diagonals labelled -1, 0 and 1 (0 defers
to the leading diagonal, negatively numbered diagonals
lie below the leading diagonal, etc.)

>> n = 5;

>> l = -(2:n+1)’; d = (1:n)’; u = ((n+1):-1:2)’;

>> B = spdiags([l’ d’ u’],-1:1,n,n);

>> full(B)

ans =

17

1 5 0 0 0

-2 2 4 0 0

0 -3 3 3 0

0 0 -4 4 2

0 0 0 -5 5

17 Systems of Linear Equations

Mathematical formulations of engineering problems of-
ten lead to sets of simultaneous linear equations. Such
is the case, for instance, when using the finite element
method (FEM).
A general system of linear equations can be expressed
in terms of a coefficient matrix A, a right-hand-side
(column) vector b and an unknown (column) vector x
as

Ax = b

or, componentwise, as

a1,1x1 + a1,2x2 + · · · a1,nxn = b1

a2,1x1 + a2,2x2 + · · · a2,nxn = b2

...

an,1x1 + an,2x2 + · · · an,nxn = bn

When A is non-singular and square (n × n), meaning
that the number of independent equations is equal to
the number of unknowns, the system has a unique so-
lution given by

x = A−1b

where A−1 is the inverse of A. Thus, the solution vector
x can, in principle, be calculated by taking the inverse
of the coefficient matrix A and multiplying it on the
right with the right-hand-side vector b.
This approach based on the matrix inverse, though for-
mally correct, is at best inefficient for practical applica-
tions (where the number of equations may be extremely
large) but may also give rise to large numerical errors
unless appropriate techniques are used. These issues are
discussed in most courses and texts on numerical meth-
ods. Various stable and efficient solution techniques
have been developed for solving linear equations and
the most appropriate in any situation will depend on
the properties of the coefficient matrix A. For instance,
on whether or not it is symmetric, or positive definite or
if it has a particular structure (sparse or full). Matlab
is equipped with many of these special techniques in its
routine library and they are invoked automatically.
The standard Matlab routine for solving systems of
linear equations is invoked by calling the matrix left-
division routine,

>> x = A \ b

where “\” is the matrix left-division operator known as
“backslash” (see help backslash).

Exercise 17.1 Enter the symmetric coefficient matrix
and right–hand–side vector b given by

A =

[
2 −1 0
1 −2 1
0 −1 2

]
, b =

[
1
0
1

]

and solve the system of equations Ax = b using the
three alternative methods:

i) x = A−1b, (the inverse A−1 may be computed in
Matlab using inv(A).)

ii) x = A \ b,

iii) xT = btAT leading to xT = b’ / A which makes
use of the “slash” or “right division” operator
“/”. The required solution is then the transpose
of the row vector xT.

Exercise 17.2 Use the backslash operator to solve the
complex system of equations for which

A =

[
2 + 2i −1 0
−1 2− 2i −1
0 −1 2

]
, b =

[
1 + i

0
1− i

]

Exercise 17.3 Find information on the matrix inver-
sion command ’inv’ using each of the methods listed in
Section 2 for obtaining help.
What kind of matrices are the ’inv’ command applicable
to?
Obviously problems may occur if the inverted matrix is
nearly singular. Suggest a command that can be used
to give an indication on whether the matrix is nearly
singular or not. [Hint: see the topics referred to by
’help inv’.]

17.1 Overdetermined system of lin-
ear equations

An overdetermined system of linear equations is a one
with more equations (m) than unknowns (n), i.e., the
coefficient matrix has more rows than columns (m > n).
Overdetermined systems frequently appear in mathe-
matical modelling when the parameters of a model are
determined by fitting to experimental data. Formally
the system looks the same as for square systems but the
coefficient matrix is rectangular and so it is not possible
to compute an inverse. In these cases a solution can be
found by requiring that the magnitude of the residual
vector r, defined by

r = Ax− b,

be minimized. The simplest and most frequently used
measure of the magnitude of r is require the Euclidean
length (or norm—see Section 14.1) which corresponds
to the sum of squares of the components of the resid-
ual. This approach leads to the least squares solution
of the overdetermined system. Hence the least squares
solution is defined as the vector x that minimizes

rT r.

It may be shown that the required solution satisfies the
so–called “normal equations”

Cx = d, where C = ATA and d = ATb.

This system is well–known that the solution of this sys-
tem can be overwhelmed by numerical rounding error
in practice unless great care is taken in its solution (a

18

large part of the difficulty is inherent in computing the
matrix–matrix product ATA). As in the solution of
square systems of linear equations, special techniques
have been developed to address these issues and they
have been incorporated into the Matlab routine library.
This means that a direct solution to the problem of
overdetermined equations is available in Matlab through
its left division operator “\”. When the matrix A is not
square, the operation

x = A\b

automatically gives the least squares solution to Ax =
b. This is illustrated in the next example.

Example 17.1 A spring is a mechanical element which,
for the simplest model, is characterized by a linear force-
deformation relationship

F = kx,

F being the force loading the spring, k the spring con-
stant or stiffness and x the spring deformation. In re-
ality the linear force–deformation relationship is only
an approximation, valid for small forces and deforma-
tions. A more accurate relationship, valid for larger
deformations, is obtained if non–linear terms are taken
into account. Suppose a spring model with a quadratic
relationship

F = k1x+ k2x
2

is to be used and that the model parameters, k1 and
k2, are to be determined from experimental data. Five
independent measurements of the force and the corre-
sponding spring deformations are measured and these
are presented in Table 1.

Force F [N] Deformation x [cm]
5 0.001

50 0.011
500 0.013

1000 0.30
2000 0.75

Table 1: Measured force-deformation data for
spring.

Using the quadratic force-deformation relationship to-
gether with the experimental data yields an overdeter-
mined system of linear equations and the components
of the residual are given by

r1 = x1k1 + x2
1k2 − F1

r2 = x2k1 + x2
2k2 − F2

r3 = x3k1 + x2
3k2 − F3

r4 = x4k1 + x2
4k2 − F4

r5 = x5k1 + x2
5k2 − F5.

These lead to the matrix and vector definitions

A =


x1 x2

1

x2 x2
2

x3 x2
3

x4 x2
4

x5 x2
5

 and b =


F1

F2

F3

F4

F5.



The appropriate Matlab commands give (the compo-
nents of x are all multiplied by 1e-2, i.e., 10−2, in order
to change from cm to m)

>> x = [.001 .011 .13 .3 .75]*1e-2;

>> A = [x’ (x’).^2]

A =

0.0000 0.0000

0.0001 0.0000

0.0013 0.0000

0.0030 0.0000

0.0075 0.0001

>> b = [5 50 500 1000 2000];

and the least squares solution to this system is given by

>> k = A\b’

k =

1.0e+07 *

0.0386

-1.5993

Thus, k ≈
[

0.39
−16.0

]
× 106 and the quadratic spring

force-deformation relationship that optimally fits ex-
perimental data in the least squares sense is

F ≈ 38.6× 104x− 16.0× 106x2.

The data and solution may be plotted with the follow-
ing commands

>> plot(x,f,’o’), hold on % plot data points

>> X = (0:.01:1)*max(x);

>> plot(X,[X’ (X.^2)’]*k,’-’) % best fit curve

>> xlabel(’x[m]’), ylabel(’F[N]’)

and the results are shown in Figure 5.

Figure 5: Data for Example 17.1 (circles) and best
least squares fit by a quadratic model (solid line).

Matlab has a routine polyfit for data fitting by poly-
nomials: see “help polyfit”. It is not applicable in
this example because we require that the force – de-
formation law passes through the origin (so there is no
constant term in the quadratic model that we used).

19

18 Characters, Strings and Text

The ability to process text in numerical processing is
useful for the input and output of data to the screen or
to disk-files. In order to manage text, a new datatype
of “character” is introduced. A piece of text is then
simply a string (vector) or array of characters.

Example 18.1 The assignment,

>> t1 = ’A’

assigns the value A to the 1-by-1 character array t1.
The assignment,

>> t2 = ’BCDE’

assigns the value BCDE to the 1-by-4 character array
t2.

Strings can be combined by using the operations for
array manipulations.
The assignment,

>> t3 = [t1,t2]

assigns a value ABCDE to the 1-by-5 character array t3.
The assignment,

>> t4 = [t3,’ are the first 5 ’;...

’characters in the alphabet.’]

assigns the value
’ABCDE are the first 5 ’

’characters in the alphabet.’

to the 2-by-27 character array t4. It is essential that
the number of characters in both rows of the array t4

is the same, otherwise an error will result. The three
dots ... signify that the command is continued on the
following line
Sometimes it is necessary to convert a character to the
corresponding number, or vice versa. These conversions
are accomplished by the commands ’str2num’—which
converts a string to the corresponding number, and two
functions, ’int2str’ and ’num2str’, which convert, re-
spectively, an integer and a real number to the corre-
sponding character string. These commands are useful
for producing titles and strings, such as ’The value of

pi is 3.1416’. This can be generated by the command
[’The value of pi is ’,num2str(pi)].

>> N = 5; h = 1/N;

>> [’The value of N is ’,int2str(N),...

’, h = ’,num2str(h)]

ans =

The value of N is 5, h = 0.2

19 Loops

There are occasions that we want to repeat a segment of
code a number of different times (such occasions are less
frequent than other programming languages because of
the : notation).

Example 19.1 Draw graphs of sin(nπx) on the inter-
val −1 ≤ x ≤ 1 for n = 1, 2, . . . , 8.

We could do this by giving 8 separate plot commands
but it is much easier to use a loop. The simplest form
would be

>> x = -1:.05:1;

>> for n = 1:8

subplot(4,2,n), plot(x,sin(n*pi*x))

end

All the commands between the lines starting “for” and
“end” are repeated with n being given the value 1 the
first time through, 2 the second time, and so forth,
until n = 8. The subplot constructs a 4 × 2 array of
subwindows and, on the nth time through the loop, a
picture is drawn in the nth subwindow.

20

The commands

>> x = -1:.05:1;

>> for n = 1:2:8

subplot(4,2,n), plot(x,sin(n*pi*x))

subplot(4,2,n+1), plot(x,cos(n*pi*x))

end

draw sinnπx and cosnπx for n = 1, 3, 5, 7 alongside
each other.
We may use any legal variable name as the “loop counter”
(n in the above examples) and it can be made to run
through all of the values in a given vector (1:8 and
1:2:8 in the examples).
We may also use for loops of the type

>> for counter = [23 11 19 5.4 6]

.......

end

which repeats the code as far as the end with
counter=23 the first time, counter=11 the second time,
and so forth.

Example 19.2 The Fibonnaci sequence starts off with
the numbers 0 and 1, then succeeding terms are the
sum of its two immediate predecessors. Mathematically,
f1 = 0, f2 = 1 and

fn = fn−1 + fn−2, n = 3, 4, 5,

Test the assertion that the ratio fn−1/fn of two suc-
cessive values approaches the golden ratio (

√
5− 1)/2

= 0.6180

>> F(1) = 0; F(2) = 1;

>> for i = 3:20

F(i) = F(i-1) + F(i-2);

end

>> plot(1:19, F(1:19)./F(2:20),’o’)

>> hold on, xlabel(’n’)

>> plot(1:19, F(1:19)./F(2:20),’-’)

>> legend(’Ratio of terms f_{n-1}/f_n’)

>> plot([0 20], (sqrt(5)-1)/2*[1,1],’--’)

The last of these commands produces the dashed hori-
zontal line.

Example 19.3 Produce a list of the values of the sums

S20 = 1 + 1
22 + 1

32 + · · ·+ 1
202

S21 = 1 + 1
22 + 1

32 + · · ·+ 1
202 + 1

212

...
S100 = 1 + 1

22 + 1
32 + · · ·+ 1

202 + 1
212 + · · ·+ 1

1002

There are a total of 81 sums. The first can be computed
using sum(1./(1:20).^2) (The function sum with a vec-
tor argument sums its components. See §22.2].) A suit-
able piece of Matlab code might be

>> S = zeros(100,1);

>> S(20) = sum(1./(1:20).^2);

>> for n = 21:100

>> S(n) = S(n-1) + 1/n^2;

>> end

>> clf; plot(S,’.’,[20 100],[1,1]*pi^2/6,’-’)

>> axis([20 100 1.5 1.7])

>> [(98:100)’ S(98:100)]

ans =

98.0000 1.6364

99.0000 1.6365

100.0000 1.6366

where a column vector S was created to hold the an-
swers. The first sum was computed directly using the
sum command then each succeeding sum was found by
adding 1/n2 to its predecessor. The little table at the
end shows the values of the last three sums—it appears
that they are approaching a limit (the value of the limit
is π2/6 = 1.64493 . . .).

Exercise 19.1 Repeat Example 19.3 to include 181
sums (i.e., the final sum should include the term 1/2002.)

20 Logicals

Matlab represents true and false by means of the in-
tegers 0 and 1.

true = 1, false = 0

If at some point in a calculation a scalar x, say, has been
assigned a value, we may make certain logical tests on
it:
x == 2 is x equal to 2?
x ~= 2 is x not equal to 2?
x > 2 is x greater than 2?
x < 2 is x less than 2?
x >= 2 is x greater than or equal to 2?
x <= 2 is x less than or equal to 2?

Pay particular attention to the fact that the test for
equality involves two equal signs ==.

>> x = pi

x =

3.1416

>> x ~= 3, x ~= pi

ans =

1

ans =

0

21

When x is a vector or a matrix, these tests are per-
formed elementwise:

x =

-2.0000 3.1416 5.0000

-1.0000 0 1.0000

>> x == 0

ans =

0 0 0

0 1 0

>> x > 1, x >=-1

ans =

0 1 1

0 0 0

ans =

0 1 1

1 1 1

>> y = x>=-1, x > y

y =

0 1 1

1 1 1

ans =

0 1 1

0 0 0

We may combine logical tests, as in

>> x

x =

-2.0000 3.1416 5.0000

-5.0000 -3.0000 -1.0000

>> x > 3 & x < 4

ans =

0 1 0

0 0 0

>> x > 3 | x == -3

ans =

0 1 1

0 1 0

As one might expect, & represents and and (not so
clearly) the vertical bar | means or; also ~ means not
as in ~= (not equal), ~(x>0), etc.

>> x > 3 | x == -3 | x <= -5

ans =

0 1 1

1 1 0

One of the uses of logical tests is to “mask out” certain
elements of a matrix.

>> x, L = x >= 0

x =

-2.0000 3.1416 5.0000

-5.0000 -3.0000 -1.0000

L =

0 1 1

0 1 1

>> pos = x.*L

pos =

0 3.1416 5.0000

0 0 0

so the matrix pos contains just those elements of x that
are non–negative.

>> x = 0:0.05:6; y = sin(pi*x); Y = (y>=0).*y;

>> plot(x,y,’:’,x,Y,’-’)

20.1 While Loops

There are some occasions when we want to repeat a
section of Matlab code until some logical condition is
satisfied, but we cannot tell in advance how many times
we have to go around the loop. This we can do with a
while...end construct.

Example 20.1 What is the greatest value of n that can
be used in the sum

12 + 22 + · · ·+ n2

and get a value of less than 100?

>> S = 1; n = 1;

>> while S+ (n+1)^2 < 100

n = n+1; S = S + n^2;

end

>> [n, S]

ans =

6 91

The lines of code between while and end will only be
executed if the condition S+ (n+1)^2 < 100 is true.

Exercise 20.1 Replace 100 in the previous example by
10 and work through the lines of code by hand. You
should get the answers n = 2 and S = 5.

Exercise 20.2 Type the code from Example20.1 into a
script–file named WhileSum.m (See §13.)

A more typical example is

Example 20.2 Find the approximate value of the root
of the equation x = cosx. (See Example 10.1.)

We may do this by making a guess x1 = π/4, say, then
computing the sequence of values

xn = cosxn−1, n = 2, 3, 4, . . .

and continuing until the difference between two succes-
sive values |xn − xn−1| is small enough.

22

Method 1:

>> x = zeros(1,20); x(1) = pi/4;

>> n = 1; d = 1;

>> while d > 0.001

n = n+1; x(n) = cos(x(n-1));

d = abs(x(n) - x(n-1));

end

n,x

n =

14

x =

Columns 1 through 7

0.7854 0.7071 0.7602 0.7247 0.7487 0.7326 0.7435

Columns 8 through 14

0.7361 0.7411 0.7377 0.7400 0.7385 0.7395 0.7388

Columns 15 through 20

0 0 0 0 0 0

There are a number of deficiencies with this program.
The vector x stores the results of each iteration but we
don’t know in advance how many there may be. In
any event, we are rarely interested in the intermediate
values of x, only the last one. Another problem is that
we may never satisfy the condition d ≤ 0.001, in which
case the program will run forever—we should place a
limit on the maximum number of iterations.
Incorporating these improvements leads to

Method 2:

>> xold = pi/4; n = 1; d = 1;

>> while d > 0.001 & n < 20

n = n+1; xnew = cos(xold);

d = abs(xnew - xold);

xold = xnew;

end

>> [n, xnew, d]

ans =

14.0000 0.7388 0.0007

We continue around the loop so long as d > 0.001 and
n < 20. For greater precision we could use the condition
d > 0.0001, and this gives

>> [n, xnew, d]

ans =

19.0000 0.7391 0.0001

from which we may judge that the root required is x =
0.739 to 3 decimal places.
The general form of while statement is

while a logical test
Commands to be executed
when the condition is true

end

20.2 if...then...else...end

This allows us to execute different commands depend-
ing on the truth or falsity of some logical tests. To test
whether or not πe is greater than, or equal to, eπ:

>> a = pi^exp(1); c = exp(pi);

>> if a >= c

b = sqrt(a^2 - c^2)

end

so that b is assigned a value only if a ≥ c. There is no
output so we deduce that a = πe < c = eπ. A more
common situation is

>> if a >= c

b = sqrt(a^2 - c^2)

else

b = 0

end

b =

0

which ensures that b is always assigned a value and
confirming that a < c.
A more extended form is

>> if a >= c

b = sqrt(a^2 - c^2)

elseif a^c > c^a

b = c^a/a^c

else

b = a^c/c^a

end

b =

0.2347

Exercise 20.3 Which of the above statements assigned
a value to b?

The general form of the if statement is

if logical test 1
Commands to be executed if test 1 is
true

elseif logical test 2
Commands to be executed if test 2 is
true but test 1 is false
...

end

21 Function m–files

These are a combination of the ideas of script m–files
(§7) and mathematical functions.

Example 21.1 The area, A, of a triangle with sides
of length a, b and c is given by

A =
√
s(s− a)(s− b)(s− c),

where s = (a + b + c)/2. Write a Matlab function that
will accept the values a, b and c as inputs and return
the value of A as output.

The main steps to follow when defining a Matlab func-
tion are:

23

1. Decide on a name for the function, making sure
that it does not conflict with a name that is al-
ready used by Matlab. In this example the name
of the function is to be area, so its definition will
be saved in a file called area.m

2. The first line of the file must have the format:

function [list of outputs]

= function name(list of inputs)

For our example, the output (A) is a function of
the three variables (inputs) a, b and c so the first
line should read

function [A] = area(a,b,c)

3. Document the function. That is, describe briefly
the purpose of the function and how it can be
used. These lines should be preceded by % which
signify that they are comment lines that will be
ignored when the function is evaluated.

4. Finally include the code that defines the func-
tion. This should be interspersed with sufficient
comments to enable another user to understand
the processes involved.

The complete file might look like:

function [A] = area(a,b,c)

% Compute the area of a triangle whose

% sides have length a, b and c.

% Inputs:

% a,b,c: Lengths of sides

% Output:

% A: area of triangle

% Usage:

% Area = area(2,3,4);

% Written by dfg, Oct 14, 1996.

s = (a+b+c)/2;

A = sqrt(s*(s-a)*(s-b)*(s-c));

%%%%%%%%% end of area %%%%%%%%%%%

The command
>> help area

will produce the leading comments from the file:

Compute the area of a triangle whose

sides have length a, b and c.

Inputs:

a,b,c: Lengths of sides

Output:

A: area of triangle

Usage:

Area = area(2,3,4);

Written by dfg, Oct 14, 1996.

To evaluate the area of a triangle with side of length
10, 15, 20:

>> Area = area(10,15,20)

Area =

72.6184

where the result of the computation is assigned to the
variable Area. The variable s used in the definition of
the function above is a “local variable”: its value is local
to the function and cannot be used outside:

>> s

??? Undefined function or variable s.

If we were to be interested in the value of s as well as
A, then the first line of the file should be changed to

function [A,s] = area(a,b,c)

where there are two output variables.
This function can be called in several different ways:

1. No outputs assigned

>> area(10,15,20)

ans =

72.6184

gives only the area (first of the output variables
from the file) assigned to ans; the second output
is ignored.

2. One output assigned

>> Area = area(10,15,20)

Area =

72.6184

again the second output is ignored.

3. Two outputs assigned

>> [Area, hlen] = area(10,15,20)

Area =

72.6184

hlen =

22.5000

Exercise 21.1 In any triangle the sum of the lengths
of any two sides cannot exceed the length of the third
side. The function area does not check to see if this
condition is fulfilled (try area(1,2,4)). Modify the file
so that it computes the area only if the sides satisfy this
condition.

21.1 Examples of functions

We revisit the problem of computing the Fibonnaci se-
quence defined by f1 = 0, f2 = 1 and

fn = fn−1 + fn−2, n = 3, 4, 5,

We want to construct a function that will return the
nth number in the Fibonnaci sequence fn.

• Input: Integer n

• Output: fn

We shall describe four possible functions and try to as-
sess which provides the best solution.

Method 1: File Fib1.m

function f = Fib1(n)

% Returns the nth number in the

% Fibonacci sequence.

F=zeros(1,n+1);

F(2) = 1;

for i = 3:n+1

F(i) = F(i-1) + F(i-2);

end

f = F(n);

24

This code resembles that given in Example 19.2. We
have simply enclosed it in a function m–file and given
it the appropriate header,

Method 2: File Fib2.m

The first version was rather wasteful of memory—it
saved all the entries in the sequence even though we
only required the last one for output. The second ver-
sion removes the need to use a vector.

function f = Fib2(n)

% Returns the nth number in the

% Fibonacci sequence.

if n==1

f = 0;

elseif n==2

f = 1;

else

f1 = 0; f2 = 1;

for i = 2:n-1

f = f1 + f2;

f1=f2; f2 = f;

end

end

Method 3: File: Fib3.m

This version makes use of an idea called “recursive
programming”— the function makes calls to itself.

function f = Fib3(n)

% Returns the nth number in the

% Fibonacci sequence.

if n==1

f = 0;

elseif n==2

f = 1;

else

f = Fib3(n-1) + Fib3(n-2);

end

Method 4: File Fib4.m

The final version uses matrix powers. The vector y has

two components, y =

[
fn
fn+1

]
.

function f = Fib4(n)

% Returns the nth number in the

% Fibonacci sequence.

A = [0 1;1 1];

y = A^n*[1;0];

f=y(1);

Assessment: One may think that, on grounds of
style, the 3rd is best (it avoids the use of loops) fol-
lowed by the second (it avoids the use of a vector). The
situation is much different when it cames to speed of
execution. When n = 20 the time taken by each of the
methods is (in seconds)

Method Time

1 0.0118
2 0.0157
3 36.5937
4 0.0078

It is impractical to use Method 3 for any value of n
much larger than 10 since the time taken by method 3
almost doubles whenever n is increased by just 1. When
n = 150

Method Time

1 0.0540
2 0.0891
3 —
4 0.0106

Clearly the 4th method is much the fastest.

22 Further Built–in Functions

22.1 Rounding Numbers

There are a variety of ways of rounding and chopping
real numbers to give integers. Use the definitions given
in the table in §28 on page 32 in order to understand
the output given below:

>> x = pi*(-1:3), round(x)

x =

-3.1416 0 3.1416 6.2832 9.4248

ans =

-3 0 3 6 9

>> fix(x)

ans =

-3 0 3 6 9

>> floor(x)

ans =

-4 0 3 6 9

>> ceil(x)

ans =

-3 0 4 7 10

>> sign(x), rem(x,3)

ans =

-1 0 1 1 1

ans =

-0.1416 0 0.1416 0.2832 0.4248

Do “help round” for help information.

22.2 The sum Function

The “sum” applied to a vector adds up its components
(as in sum(1:10)) while, for a matrix, it adds up the
components in each column and returns a row vector.
sum(sum(A)) then sums all the entries of A.

>> A = [1:3; 4:6; 7:9]

A =

1 2 3

4 5 6

7 8 9

>> s = sum(A), ss = sum(sum(A))

25

s =

12 15 18

ss =

45

>> x = pi/4*(1:3)’;

>> A = [sin(x), sin(2*x), sin(3*x)]/sqrt(2)

>> A =

0.5000 0.7071 0.5000

0.7071 0.0000 -0.7071

0.5000 -0.7071 0.5000

>> s1 = sum(A.^2), s2 = sum(sum(A.^2))

s1 =

1.0000 1.0000 1.0000

s2 =

3.0000

The sums of squares of the entries in each column of A

are equal to 1 and the sum of squares of all the entries
is equal to 3.

>> A*A’

ans =

1.0000 0 0

0 1.0000 0.0000

0 0.0000 1.0000

>> A’*A

ans =

1.0000 0 0

0 1.0000 0.0000

0 0.0000 1.0000

It appears that the products AA′ and A′A are both
equal to the identity:

>> A*A’ - eye(3)

ans =

1.0e-15 *

-0.2220 0 0

0 -0.2220 0.0555

0 0.0555 -0.2220

>> A’*A - eye(3)

ans =

1.0e-15 *

-0.2220 0 0

0 -0.2220 0.0555

0 0.0555 -0.2220

This is confirmed since the differences are at round–
off error levels (less than 10−15). A matrix with this
property is called an orthogonal matrix.

22.3 max & min

These functions act in a similar way to sum. If x is a
vector, then max(x) returns the largest element in x

>> x = [1.3 -2.4 0 2.3], max(x), max(abs(x))

x =

1.3000 -2.4000 0 2.3000

ans =

2.3000

ans =

2.4000

>> [m, j] = max(x)

m =

2.3000

j =

4

When we ask for two outputs, the first gives us the max-
imum entry and the second the index of the maximum
element.
For a matrix, A, max(A) returns a row vector containing
the maximum element from each column. Thus to find
the largest element in A we have to use max(max(A)).

22.4 Random Numbers

The function rand(m,n) produces an m × n matrix of
random numbers, each of which is in the range 0 to 1.
rand on its own produces a single random number.

>> y = rand, Y = rand(2,3)

y =

0.9191

Y =

0.6262 0.1575 0.2520

0.7446 0.7764 0.6121

Repeating these commands will lead to different an-
swers.
Example: Write a function–file that will simulate n
throws of a pair of dice.
This requires random numbers that are integers in the
range 1 to 6. Multiplying each random number by 6
will give a real number in the range 0 to 6; rounding
these to whole numbers will not be correct since it will
then be possible to get 0 as an answer. We need to use

floor(1 + 6*rand)

Recall that floor takes the largest integer that is smaller
than a given real number (see Table 2, page 32).
File: dice.m

function [d] = dice(n)

% simulates "n" throws of a pair of dice

% Input: n, the number of throws

% Output: an n times 2 matrix, each row

% referring to one throw.

%

% Useage: T = dice(3)

d = floor(1 + 6*rand(n,2));

%% end of dice

>> dice(3)

ans =

6 1

2 3

4 1

>> sum(dice(100))/100

ans =

3.8500 3.4300

The last command gives the average value over 100
throws (it should have the value 3.5).

26

22.5 find for vectors

The function “find” returns a list of the positions (in-
dices) of the elements of a vector satisfying a given con-
dition. For example,

>> x = -1:.05:1;

>> y = sin(3*pi*x).*exp(-x.^2); plot(x,y,’:’)

>> k = find(y > 0.2)

k =

Columns 1 through 12

9 10 11 12 13 22 23 24 25 26 27 36

Columns 13 through 15

37 38 39

>> hold on, plot(x(k),y(k),’o’)

>> km = find(x>0.5 & y<0)

km =

32 33 34

>> plot(x(km),y(km),’-’)

22.6 find for matrices

The find–function operates in much the same way for
matrices:

>> A = [-2 3 4 4; 0 5 -1 6; 6 8 0 1]

A =

-2 3 4 4

0 5 -1 6

6 8 0 1

>> k = find(A==0)

k =

2

9

Thus, we find that A has elements equal to 0 in positions
2 and 9. To interpret this result we have to recognize
that “find” first reshapes A into a column vector—this
is equivalent to numbering the elements of A by columns
as in

1 4 7 10
2 5 8 11
3 6 9 12

>> n = find(A <= 0)

n =

1

2

8

9

>> A(n)

ans =

-2

0

-1

0

Thus, n gives a list of the locations of the entries in A

that are ≤ 0 and then A(n) gives us the values of the
elements selected.

>> m = find(A’ == 0)

m =

5

11

Since we are dealing with A’, the entries are numbered
by rows.

23 Plotting Surfaces

A surface is defined mathematically by a function f(x, y)—
corresponding to each value of (x, y) we compute the
height of the function by

z = f(x, y).

In order to plot this we have to decide on the ranges
of x and y—suppose 2 ≤ x ≤ 4 and 1 ≤ y ≤ 3. This
gives us a square in the (x, y)–plane. Next, we need to
choose a grid on this domain; Figure 6 shows the grid
with intervals 0.5 in each direction. Finally, we have

Figure 6: An example of a 2D grid

to evaluate the function at each point of the grid and
“plot” it.
Suppose we choose a grid with intervals 0.5 in each
direction for illustration. The x– and y–coordinates of
the grid lines are

x = 2:0.5:4; y = 1:0.5:3;

in Matlab notation. We construct the grid with meshgrid:

27

>> [X,Y] = meshgrid(2:.5:4, 1:.5:3);

>> X

X =

2.0000 2.5000 3.0000 3.5000 4.0000

2.0000 2.5000 3.0000 3.5000 4.0000

2.0000 2.5000 3.0000 3.5000 4.0000

2.0000 2.5000 3.0000 3.5000 4.0000

2.0000 2.5000 3.0000 3.5000 4.0000

>> Y

Y =

1.0000 1.0000 1.0000 1.0000 1.0000

1.5000 1.5000 1.5000 1.5000 1.5000

2.0000 2.0000 2.0000 2.0000 2.0000

2.5000 2.5000 2.5000 2.5000 2.5000

3.0000 3.0000 3.0000 3.0000 3.0000

If we think of the ith point along from the left and
the jth point up from the bottom of the grid) as corre-
sponding to the (i, j)th entry in a matrix, then (X(i,j),

Y(i,j)) are the coordinates of the point. We then need
to evaluate the function f using X and Y in place of x
and y, respectively.

Example 23.1 Plot the surface defined by the function

f(x, y) = (x− 3)2 − (y − 2)2

for 2 ≤ x ≤ 4 and 1 ≤ y ≤ 3.

>> [X,Y] = meshgrid(2:.2:4, 1:.2:3);

>> Z = (X-3).^2-(Y-2).^2;

>> mesh(X,Y,Z)

>> title(’Saddle’), xlabel(’x’),ylabel(’y’)

Figure 7: Plot of Saddle function.

Exercise 23.1 Repeat the previous example replacing
mesh by surf and then by surfl. Consult the help pages
to find out more about these functions.

Example 23.2 Plot the surface defined by the function

f = −xye−2(x2+y2)

on the domain −2 ≤ x ≤ 2,−2 ≤ y ≤ 2. Find the
values and locations of the maxima and minima of the
function.

>> [X,Y] = meshgrid(-2:.1:2,-2:.2:2);

>> f = -X.*Y.*exp(-2*(X.^2+Y.^2));

>> figure (1)

>> mesh(X,Y,f), xlabel(’x’), ylabel(’y’), grid

>> figure (2), contour(X,Y,f)

>> xlabel(’x’), ylabel(’y’), grid, hold on

Figure 8: “mesh” and “contour” plots.

To locate the maxima of the “f” values on the grid:

>> fmax = max(max(f))

fmax =

0.0886

>> kmax = find(f==fmax)

kmax =

323

539

>> Pos = [X(kmax), Y(kmax)]

Pos =

-0.5000 0.6000

0.5000 -0.6000

>> plot(X(kmax),Y(kmax),’*’)

>> text(X(kmax),Y(kmax),’ Maximum’)

24 Timing

Matlab allows the timing of sections of code by pro-
viding the functions tic and toc. tic switches on a
stopwatch while toc stops it and returns the CPU time

28

Figure 9: contour plot showing maxima.

(Central Processor Unit) in seconds. The timings will
vary depending on the model of computer being used
and its current load.

>> tic,for j=1:1000,x = pi*R(3);end,toc

elapsed_time = 0.5110

>> tic,for j=1:1000,x=pi*R(3);end,toc

elapsed_time = 0.5017

>> tic,for j=1:1000,x=R(3)/pi;end,toc

elapsed_time = 0.5203

>> tic,for j=1:1000,x=pi+R(3);end,toc

elapsed_time = 0.5221

>> tic,for j=1:1000,x=pi-R(3);end,toc

elapsed_time = 0.5154

>> tic,for j=1:1000,x=pi^R(3);end,toc

elapsed_time = 0.6236

25 On–line Documentation

In addition to the on–line help facility, there is a hy-
pertext browsing system giving details of (most) com-
mands and some examples. This is accessed by

>> doc

which brings up the Netscape document previewer (and
allows for “surfing the internet superhighway”—the World
Wide Web (WWW). It is connected to a worldwide sys-
tem which, given the appropriate addresses, will pro-
vide information on almost any topic).
Words that are underlined in the browser may be clicked
on with LB and lead to either a further subindex or a
help page.
Scroll down the page shown and click on general which
will take you to “General Purpose Commands”; click on
clear. This will describe how you can clear a variable’s
value from memory.
You may then either click the “Table of Contents” which

takes you back to the start, “Index” or the Back but-
ton at the lower left corner of the window which will
take you back to the previous screen.

To access other “home pages”, click on Open at the

bottom of the window and, in the “box” that will open
up, type

http://www.maths.dundee.ac.uk

or

http://www.maths.dundee.ac.uk/software/

and select Matlab from the array of choices.

26 Reading and Writing Data
Files

Direct input of data from keyboard becomes impracti-
cal when

• the amount of data is large and

• the same data is analysed repeatedly.

In these situations input and output is preferably ac-
complished via data files. We have already described in
Section 9 the use of the commands save and load that,
respectively, write and read the values of variables to
disk files.
When data are written to or read from a file it is cru-
cially important that a correct data format is used. The
data format is the key to interpreting the contents of a
file and must be known in order to correctly interpret
the data in an input file. There a two types of data
files: formatted and unformatted. Formatted data files
uses format strings to define exactly how and in what
positions of a record the data is stored. Unformatted
storage, on the other hand, only specifies the number
format.
The files used in this section are available from the web
site

http://www.maths.dundee.ac.uk/software/#matlab

Those that are unformatted are in a satisfactory form
for the Windows version on Matlab (version 6.1) but
not on Version 5.3 under Unix.

Exercise 26.1 Suppose the numeric data is stored in a
file ’table.dat’ in the form of a table, as shown below.

100 2256

200 4564

300 3653

400 6798

500 6432

The three commands,

>> fid = fopen(’table.dat’,’r’);

>> a = fscanf(fid,’%3d%4d’);

>> fclose(fid);

respectively

1. open a file for reading (this is designated by the
string ’r’). The variable fid is assigned a unique
integer which identifies the file used (a file iden-
tifier). We use this number in all subsequent ref-
erences to the file.

29

2. read pairs of numbers from the file with file iden-
tifier fid, one with 3 digits and one with 4 digits,
and

3. close the file with file identifier fid.

This produces a column vector a with elements, 100
2256 200 4564 ...500 6432. This vector can be con-
verted to 5× 2 matrix by the command
A = reshape(2,2,5)’;.

26.1 Formatted Files

Some computer codes and measurement instruments
produce results in formatted data files. In order to read
these results into Matlab for further analysis the data
format of the files must be known. Formatted files in
ASCII format are written to and read from with the
commands fprintf and fscanf.

fprintf(fid, ’format’, variables) writes vari-
ables an a format specified in string ’format’ to
the file with identifier fid

a = fscanf(fid, ’format’,size) assigns to vari-
able a data read from file with identifier fid un-
der format ’format’.

Exercise 26.2 Study the available information and help
on fscanf and fprintf commands. What is the mean-
ing of the format string, ’%3d\n’?

Example 26.1 Suppose a sound pressure measurement
system produces a record with 512 time – pressure read-
ings stored on a file ’sound.dat’. Each reading is listed
on a separate line according to a data format specified
by the string, ’%8.6f %8.6f’.

A set of commands reading time – sound pressure data
from ’sound.dat’ is,

Step 1: Assign a namestring to a file identifier.

>> fid1 = fopen(’sound.dat’,’r’);

The string ’r’ indicates that data is to be read
(not written) from the file.

Step 2: Read the data to a vector named ’data’ and close
the file,

>> data = fscanf(fid1, ’%f %f’);

>> fclose(fid1);

Step 3: Partition the data in separate time and sound
pressure vectors,

>> t = data(1:2:length(data));

>> press = data(2:2:length(data));

The pressure signal can be plotted in a lin-lin

diagram,

>> plot(t, press);

The result is shown in Figure 10.

Figure 10: Graph of “sound data” from Exam-
ple 26.1

26.2 Unformatted Files

Unformatted or binary data files are used when small-
sized files are required. In order to interpret an unfor-
matted data file the data precision must be specified.
The precision is specified as a string, e.g., ’float32’,
controlling the number of bits read for each value and
the interpretation of those bits as character, integer or
floating point values. Precision ’float32’, for instance,
specifies each value in the data to be stored as a floating
point number in 32 memory bits.

Example 26.2 Suppose a system for vibration mea-
surement stores measured acceleration values as float-
ing point numbers using 32 memory bits. The data is
stored on file ’vib.dat. The following commands illus-
trate how the data may be read into Matlab for analysis.

Step 1: Assign a file identifier, fid, to the string specify-
ing the file name.

>> fid = fopen(’vib.dat’,’rb’);

The string ’rb’ specifies that binary numbers are
to be read from the file.

Step 2 Read all data stored on file ’vib.dat’ into a vec-
tor vib.

>> vib = fread(fid, ’float32’);

>> fclose(fid);

>> size(vib)

ans =

131072

The size(vib) command determines the size,
i.e., the number of rows and columns of the vi-
bration data vector.

In order to plot the vibration signal with a correct
time scale, the sampling frequency (the number
of instrument readings taken per second) used by
the measurement system must be known. In this
case it is known to be 24000 Hz so that there is
a time interval of 1/24000 seconds between two
samples.

30

Step 3: Create a column vector containing the correct
time scale.

>> dt = 1/24000;

>> t = dt*(1:length(vib))’;

Step 4: Plot the vibration signal in a lin-lin diagram

>> plot(t,vib);

>> title(’Vibration signal’);

>> xlabel(’Time,[s]’);

>> ylabel(’Acceleration, [m/s^2]’);

27 Graphic User Interfaces

The efficiency of programs that are used often and by
several different people can be improved by simplifying
the input and output data management. The use of
Graphic User Interfaces (GUI), which provides facilities
such as menus, pushbuttons, sliders etc, allow programs
to be used without any knowledge of Matlab. They also
provides means for efficient data management.
A graphic user interface is a Matlab script file cus-
tomized for repeated analysis of a specific type of prob-
lem. There are two ways to design a graphic user inter-
face. The simplest method is to use a tool especially de-
signed for the purpose. Matlab provides such a tool and
it is invoked by typing ’guide’ at the Matlab prompt.
Maximum flexibility and control over the programming
is, however, obtained by using the basic user interface
commands. The following text demonstrates the use of
some basic commands.

Example 27.1 Suppose a sound pressure spectrum is
to be plotted in a graph. There are four alternative plot
formats; lin-lin, lin-log, log-lin and log-log. The graphic
user interface below reads the pressure data stored on a
binary file selected by the user, plots it in a lin-lin for-
mat as a function of frequency and lets the user switch
between the four plot formats.

We use two m–files. The first (specplot.m) is the main
driver file which builds the graphics window. It calls
the second file (firstplot.m) which allows the user to
select among the possible *.bin files in the current di-
rectory.

% File: specplot.m

%

% GUI for plotting a user selected frequency spectrum

% in four alternative plot formats, lin-lin,

% lin-log, log-lin and log-log.

%

% Author: U Carlsson, 2001-08-22

% Create figure window for graphs

figWindow = figure(’Name’,’Plot alternatives’);

% Create file input selection button

fileinpBtn = uicontrol(’Style’,’pushbutton’,...

’string’,’File’,’position’,[5,395,40,20],...

’callback’,’[fdat,pdat] = firstplot;’);

% Press ’File’ calls function ’firstplot’

% Create pushbuttons for switching between four

% different plot formats. Set up the axis stings.

X = ’Frequency, [Hz]’;

Y = ’Pressure amplitude, [Pa]’;

linlinBtn = uicontrol(’style’,’pushbutton’,...

’string’,’lin-lin’,...

’position’,[200,395,40,20],’callback’,...

’plot(fdat,pdat);xlabel(X);ylabel(Y);’);

linlogBtn = uicontrol(’style’,’pushbutton’,...

’string’,’lin-log’,...

’position’,[240,395,40,20],...

’callback’,...

’semilogy(fdat,pdat);xlabel(X);ylabel(Y);’);

loglinBtn = uicontrol(’style’,’pushbutton’,...

’string’,’log-lin’,...

’position’,[280,395,40,20],...

’callback’,...

’semilogx(fdat,pdat);xlabel(X);ylabel(Y);’);

loglogBtn = uicontrol(’style’,’pushbutton’,...

’string’,’log-log’,...

’position’,[320,395,40,20],...

’callback’,...

’loglog(fdat,pdat);xlabel(X); ylabel(Y);’);

% Create exit pushbutton with red text.

exitBtn = uicontrol(’Style’,’pushbutton’,...

’string’,’EXIT’,’position’,[510,395,40,20],...

’foregroundcolor’,[1 0 0],’callback’,’close;’);

% Script file: firstplot.m

% Brings template for file selection. Reads

% selected filename and path and plots

% spectrum in a lin-lin diagram.

% Output data are frequency and pressure

% amplitude vectors: ’fdat’ and ’pdat’.

% Author: U Carlsson, 2001-08-22

function [fdat,pdat] = firstplot

% Call Matlab function ’uigetfile’ that

% brings file selction template.

[filename,pathname] = uigetfile(’*.bin’,...

’Select binary data-file:’);

% Change directory

cd(pathname);

% Open file for reading binary floating

% point numbers.

fid = fopen(filename,’rb’);

data = fread(fid,’float32’);

% Close file

fclose(fid);

% Partition data vector in frequency and

% pressure vectors

pdat = data(2:2:length(data));

fdat = data(1:2:length(data));

% Plot pressure signal in a lin-lin diagram

plot(fdat,pdat);

% Define suitable axis labels

xlabel(’Frequency, [Hz]’);

ylabel(’Pressure amplitude, [Pa]’);

31

Executing this GUI from the command line
(>> specplot) brings the following screen.

Figure 11: Graph of “vibration data” from Exam-
ple 27.1

Example 27.1 illustrates how the ’callback’ property
allows the programmer to define what actions should
result when buttons are pushed etc. These actions may
consist of single Matlab commands or complicated se-
quences of operations defined in various subroutines.

Exercise 27.1 Five different sound recordings are stored
on binary data files, sound1.bin, sound2.bin, . . . , sound5.bin.
The storage precision is ’float32’ and the sounds are
recorded with sample frequency 12000 Hz.
Write a graphic user interface that, opens an interface
window and

• lets the user select one of the five sounds,

• plots the selected sound pressure signal as a func-
tion of time in a lin-lin diagram,

• lets the user listen to the sound by pushing a
’SOUND’ button and finally

• closes the session by pressing a ’CLOSE’ button.

28 Command Summary

The command
>> help

will give a list of categories for which help is available
(e.g. matlab/general covers the topics listed in Table 3.
Further information regarding the commands listed in
this section may then be obtained by using:
>> help topic

try, for example,
>> help help

abs Absolute value
sqrt Square root function
sign Signum function
conj Conjugate of a complex number
imag Imaginary part of a complex

number
real Real part of a complex number
angle Phase angle of a complex number
cos Cosine function
sin Sine function
tan Tangent function
exp Exponential function
log Natural logarithm
log10 Logarithm base 10
cosh Hyperbolic cosine function
sinh Hyperbolic sine function
tanh Hyperbolic tangent function
acos Inverse cosine
acosh Inverse hyperbolic cosine
asin Inverse sine
asinh Inverse hyperbolic sine
atan Inverse tan
atan2 Two–argument form of inverse

tan
atanh Inverse hyperbolic tan
round Round to nearest integer
floor Round towards minus infinity
fix Round towards zero
ceil Round towards plus infinity
rem Remainder after division

Table 2: Elementary Functions

32

Managing commands and functions.
help On-line documentation.
doc Load hypertext documentation.
what Directory listing of M-, MAT-

and MEX-files.
type List M-file.
lookfor Keyword search through the

HELP entries.
which Locate functions and files.
demo Run demos.

Managing variables and the workspace.
who List current variables.
whos List current variables, long form.
load Retrieve variables from disk.
save Save workspace variables to disk.
clear Clear variables and functions

from memory.
size Size of matrix.
length Length of vector.
disp Display matrix or text.
Working with files and the operating system.
cd Change current working direc-

tory.
dir Directory listing.
delete Delete file.
! Execute operating system com-

mand.
unix Execute operating system com-

mand & return result.
diary Save text of MATLAB session.

Controlling the command window.
cedit Set command line edit/recall fa-

cility parameters.
clc Clear command window.
home Send cursor home.
format Set output format.
echo Echo commands inside script

files.
more Control paged output in com-

mand window.
Quitting from MATLAB.

quit Terminate MATLAB.

Table 3: General purpose commands.

Matrix analysis.
cond Matrix condition number.
norm Matrix or vector norm.
rcond LINPACK reciprocal condition

estimator.
rank Number of linearly independent

rows or columns.
det Determinant.
trace Sum of diagonal elements.
null Null space.
orth Orthogonalization.
rref Reduced row echelon form.

Linear equations.
\ and / Linear equation solution; use

“help slash”.
chol Cholesky factorization.
lu Factors from Gaussian elimina-

tion.
inv Matrix inverse.
qr Orthogonal- triangular decompo-

sition.
qrdelete Delete a column from the QR fac-

torization.
qrinsert Insert a column in the QR factor-

ization.
nnls Non–negative least- squares.
pinv Pseudoinverse.
lscov Least squares in the presence of

known covariance.
Eigenvalues and singular values.

eig Eigenvalues and eigenvectors.
poly Characteristic polynomial.
polyeig Polynomial eigenvalue problem.
hess Hessenberg form.
qz Generalized eigenvalues.
rsf2csf Real block diagonal form to com-

plex diagonal form.
cdf2rdf Complex diagonal form to real

block diagonal form.
schur Schur decomposition.
balance Diagonal scaling to improve

eigenvalue accuracy.
svd Singular value decomposition.

Matrix functions.
expm Matrix exponential.
expm1 M- file implementation of expm.
expm2 Matrix exponential via Taylor se-

ries.
expm3 Matrix exponential via eigenval-

ues and eigenvectors.
logm Matrix logarithm.
sqrtm Matrix square root.
funm Evaluate general matrix function.

Table 4: Matrix functions—numerical linear alge-
bra.

33

Graphics & plotting.
figure Create Figure (graph window).
clf Clear current figure.
close Close figure.
subplot Create axes in tiled positions.
axis Control axis scaling and appear-

ance.
hold Hold current graph.
figure Create figure window.
text Create text.
print Save graph to file.
plot Linear plot.
loglog Log-log scale plot.
semilogx Semi-log scale plot.
semilogy Semi-log scale plot.

Specialized X-Y graphs.
polar Polar coordinate plot.
bar Bar graph.
stem Discrete sequence or ”stem” plot.
stairs Stairstep plot.
errorbar Error bar plot.
hist Histogram plot.
rose Angle histogram plot.
compass Compass plot.
feather Feather plot.
fplot Plot function.
comet Comet-like trajectory.

Graph annotation.
title Graph title.
xlabel X-axis label.
ylabel Y-axis label.
text Text annotation.
gtext Mouse placement of text.
grid Grid lines.
contour Contour plot.
mesh 3-D mesh surface.
surf 3-D shaded surface.
waterfall Waterfall plot.
view 3-D graph viewpoint specifica-

tion.
zlabel Z-axis label for 3-D plots.
gtext Mouse placement of text.
grid Grid lines.

Table 5: Graphics & plot commands.

34

Index

<, 21, 23
<=, 21, 23
==, 21, 23
>, 21, 23
>=, 21, 23
%, 10, 24
’, 5
.’, 6
.*, 11
..., 8
./, 12
.^, 12
:, 5, 16
;, 4

abs, 32
accelerators

keyboard, 9
and, 22
angle, 32
ans, 3
array, 13
axes, 9, 13
axis, 9

auto, 9
normal, 9
square, 9

browser, 29

ceil, 32
clf, 8
close, 8
colon notation, 5, 16
column vectors, 5
comment (%), 10, 24
complex

conjugate transpose, 6
numbers, 6

complex numbers, 3
components of a vector, 4
conj, 32
contour, 28
copying output, 10
cos, 32
CPU, 28
cursor keys, 9

demo, 3
diag, 15
diary, 6
dice, 26
divide

dot, 12
documentation, 29
dot

divide ./, 12
power .^, 12
product .*, 11, 16

echo, 10
elementary functions, 4
eye, 14
ezplot, 7

false, 21
Fibonnaci, 21, 24
figure, 8
file

function, 23
script, 10

find, 27
fix, 32
floor, 32
floor, 26
for

loop, 20
format, 3

long, 12
function m–files, 23
functions

elementary, 4
trigonometric, 4

get, 9
graphs, see plotting
grid, 7, 13, 28
GUI, 31

hard copy, 8
help, 2, 24
hold, 7, 13
home page, 29

if statement, 23
imag, 32

keyboard accelerators, 9

labels for plots, 7
legend, 7
length of a vector, 4, 5, 11
line styles, 7
linspace, 6
logical conditions, 21
loops, 20

while, 22

m–files, 10, 23
matrix, 13

building, 15
diagonal, 15
identity, 14
indexing, 16
n=5;tridiagonal, 17
orthogonal, 26
size, 14
sparse, 17
special, 14
spy, 15

35

square, 14
symmetric, 14
zeros, 14

matrix products, 17
matrix–vector products, 16
max, 26, 28
mesh, 28
meshgrid, 27
min, 26, 28
more, 3
multi–plots, 7

Netscape, 29
norm of a vector, 11
not, 21–23
numbers, 3

complex, 3
format, 3
random, 26
rounding, 25

ones, 14
or, 22

plot, 20
plotting, 6, 13, 27

labels, 7
line styles, 7
printing, 8
surfaces, 27
title, 7

power
dot, 12

printing plots, 8
priorities

in arithmetic, 3
product

dot, 11, 16
scalar, 16, 17

quit, 2

rand, 26
random numbers, 26
real, 32
rem, 32
round, 32
rounding error, 4
rounding numbers, 25

save, 6
scalar product, 11, 16, 17
script files, 10
semi–colon, 4, 13
set, 9
shapes, 7
sign, 32
sin, 32
size, 14
sort, 5
sparse, 17
spdiags, 17

spy, 15
sqrt, 32
strings, 7
subplot, 8, 20
subscripts, 9
sum, 21, 25
superscripts, 9
surfing the internet highway, 29

timing, 28
title for plots, 7
toc, 28
transposing, 5
tridiagonal, 17
trigonometric functions, 4
true, 21
type (list contents of m-file), 10

variable names, 3
vector

components, 4
vectors

column, 5
row, 4

what, 10
while loops, 22
whos, 6
WWW, 29

xlabel, 7, 28
xterm, 2

ylabel, 7

zeros, 14
zoom, 8

36

