Today's Topics

- What's an OS?
- What's an OS for?
- Classifications of OS
- Components of OS
- Scheduling
- Memory management

What's an OS ?

Definition : Software that controls the execution of programs and that may provide services such as resource allocation, scheduling, input/output control, and data management. Although operating systems are predominantly software, partial hardware implementations are possible.

Main Function of OS

- Convenience
- □ Efficiency

Functions

- User Interface, e.g. GUI, commandline interface
- Managing computer hardware
- File system management
- Supporting program creation and execution
- □ System access

Classifications of OS

- □ Interactive or batch
- > Typical OS these days can do both.
- Mutiprogramming or uniprogramming (Multitask or Unitask)
- > Only <u>multiprogramming</u> OS's exist.
- Multiuser or Single User
- PC's OS tends to be single user, but Linux is multiuser.

Batch multiprogramming vs. Time sharing

Principal objective

- Batch : maximize processor use
- Time sharing : minimize response time
- Source of directives
 - Batch : Job control language commands
 - Time sharing : commands entered at the terminal

Basic Components of an OS

Interface

- Scheduler (long-term scheduler)
- Dispatcher (short-term scheduler)
- Resource allocator

Scheduling

Types of scheduling

- Long-term scheduling: the decision to add to the pool of processes to be executed
- Short-term scheduling: the decision as to which available process will be executed by the processor
- I/O scheduling: the decision as to which process's pending I/O request shall be handled by an available I/O device

Long-term Scheduling

- Controls degree of multiprogramming
- A job or user program -> process, added to the queue for the shortterm scheduler
- Criteria:
 - Priority
 - Approximated execution time
 - I/O requirement

Short-term scheduling (2)

Process control block : information indicating the state of the process and other information necessary for process execution

Identifier State Priority **Program Counter Memory Pointers** Context Data I/O Status Information Accounting Information

Scheduling Example

Operating System	Operating System	Operating System			
	Control				
Service Handler Scheduler	Service Handler Interrupt Handler	Service Handler Scheduler Interrupt Handler			
A "Running"	A "Waiting"	A "Waiting"			
In Control					
B "Ready"	B "Ready"	B "Running"			
		In Control			
Other Partitions	Other Partitions	Other Partitions			

Key Elements of OS for Multiprogramming

Queuing diagram representation

Multiprogramming schemes

- Cooperative multiprogramming (Nonpreemptive multiprogramming): Windows, MacOS
- Preemptive multiprogramming: UNIX, Linux

Memory Management

- Maximizes the use of the processor by packing as many processes into memory as possible.
- Two parts of Main memory: System (OS) + User
- Memory management -> controls subdivision of "user" part of memory

Swapping

Put processes in I/O queue into Intermediate queue and add a process from long-term queue

Partitioning

Subdivide memory into	Operating System 128 K
small parts	64 K
Methods:	192 K
Fixed-size partition	
Variable-size partition	256 K
	384 K

Partitioning (2)

Compaction: OS shifts the processes in memory to place all the free memory together in one block.

Operating System 128K	Operating System		Operating System		Operating System		Operating System		Operating System		Operating System
64K	Process 1		Process 1		Process 1		Process 1		Process 1		Process 1
128K	Process 2		Process 2		Process 2		Process 2				Process 6
256K	Process 3	Process 4 In	Process 3	Process 3 Out		Process 5 In	Process 5	Process 2 Out	Process 5	Process 6 In	Process 5
384K			Process 4		Process 4		Process 4		Process 4		Process 4

Paging

Virtual memory

- Demand paging: each page of a process is read in only when needed, on demand.
- Page Fault: the program uses an instruction or data on a page not in main memory.
- A process can be larger than all of main memory.
- Main memory=real memory, memory on the disk = virtual memory

Segmentation

- Segmentation is visible to programmers.
- Memory = multiple address spaces or segments
- Segments are variable and dynamic.
- Can create program segments and data segments
- Each segment may be assigned access and usage rights.

Segmentation (2)

Advantages:

- Simplifies the handling of growing data structure
- Allows programs to be altered and recompiled independently
- Lends itself to sharing among processes
- Lends itself to protection
- Can be combined with Paging.
- Modern processors support both mechanisms.

Segmentation (3)

Current OS's

- U WINDOWS
- 🗆 Linux
- MacOS
- Others : UNIX(Solaris, HP-UX), iOS, Android, Symbian, etc.
- □ Shares Estimates (%):
 - Desktop,laptop : Win 92.2 Mac 6.4 Lin 1.4
 - Tablets : iOS 57.6 Android 39.1
 - Servers : Lin 63.9 Win 36.1
 - Supercomputer : Lin 91.4 IBM 5.6